Patents by Inventor Anshu A. Pradhan

Anshu A. Pradhan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11482147
    Abstract: The embodiments herein relate to methods for controlling an optical transition and the ending tint state of an optically switchable device, and optically switchable devices configured to perform such methods. In various embodiments, non-optical (e.g., electrical) feedback is used to help control an optical transition. The feedback may be used for a number of different purposes. In many implementations, the feedback is used to control an ongoing optical transition. In some embodiments a transfer function is used calibrate optical drive parameters to control the tinting state of optically switching devices.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: October 25, 2022
    Assignee: View, Inc.
    Inventors: Anshu A. Pradhan, Abhishek Anant Dixit
  • Patent number: 11480841
    Abstract: This disclosure provides configurations, methods of use, and methods of fabrication for a bus bar of an optically switchable device. In one aspect, an apparatus includes a substrate and an optically switchable device disposed on a surface of the substrate. The optically switchable device has a perimeter with at least one corner including a first side, a second side, and a first vertex joining the first side and the second side. A first bus bar and a second bus bar are affixed to the optically switchable device and configured to deliver current and/or voltage for driving switching of the device. The first bus bar is proximate to the corner and includes a first arm and a second arm having a configuration that substantially follows the shape of the first side, the first vertex, and the second side of the corner.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: October 25, 2022
    Assignee: View, Inc.
    Inventors: Gordon Jack, Anshu Pradhan, Kaustubh Nadkarni
  • Publication number: 20220334445
    Abstract: Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of optically switchable devices such as electrochromic devices. Such devices are often provided on windows such as architectural glass. In certain embodiments, the applied drive voltage is controlled in a manner that efficiently drives an optical transition over the entire surface of the electrochromic device. The drive voltage is controlled to account for differences in effective voltage experienced in regions between the bus bars and regions proximate the bus bars. Regions near the bus bars experience the highest effective voltage. In some cases, feedback may be used to monitor an optical transition. In these or other cases, a group of optically switchable devices may transition together over a particular duration to achieve approximately uniform tint states over time during the transition.
    Type: Application
    Filed: April 13, 2022
    Publication date: October 20, 2022
    Inventors: Gordon E. Jack, Sridhar Karthik Kailasam, Stephen Clark Brown, Anshu A. Pradhan, Jose Vigano, Dhairya Shrivastava, Mark David Mendenhall
  • Patent number: 11440838
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition. In certain embodiments, the device includes a counter electrode having an anodically coloring electrochromic material in combination with an additive.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: September 13, 2022
    Assignee: View, Inc.
    Inventors: Anshu A. Pradhan, Robert T. Rozbicki, Dane Gillaspie, Sridhar K. Kailasam
  • Patent number: 11422426
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel-tungsten-tin-oxide (NiWSnO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: August 23, 2022
    Assignee: View, Inc.
    Inventors: Dane Gillaspie, Anshu A. Pradhan, Sridhar K. Kailasam
  • Publication number: 20220259096
    Abstract: Methods for protecting transparent electronically conductive layers on glass substrates are described herein. Methods include depositing a sacrificial coating during deposition of the transparent electronically conductive layer, before packing the glass substrate for storage or shipping, after unpacking glass substrates from a stack of glass substrates, and/or after a washing operation prior to fabricating an electrochromic stack on the transparent electronically conductive layer. Methods also include removing the sacrificial coating during a washing operation, during tempering, or prior to depositing an electrochromic stack by, e.g., heating the sacrificial coating or exposing the sacrificial coating to an inert plasma.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 18, 2022
    Inventors: Ronald M. Parker, Anshu A. Pradhan, Abhishek Anant Dixit, Douglas Dauson
  • Publication number: 20220252952
    Abstract: Electrochromic device (550) having at least one multi-layer conductor (560,580) with a metal layer (564,584) between a first transparent conductive oxide layer (562,566,582,586) and a second transparent conductive oxide layer (562,566,582,586) and optionally having one or more tuning layers adjacent the metal layer.
    Type: Application
    Filed: July 30, 2020
    Publication date: August 11, 2022
    Applicant: View, Inc.
    Inventors: Robert T. Rozbicki, Anshu A. Pradhan, Sridhar Karthik Kailasam, Robin Friedman, Gordon E. Jack, Dane Thomas Gillaspie
  • Publication number: 20220241893
    Abstract: Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.
    Type: Application
    Filed: April 12, 2022
    Publication date: August 4, 2022
    Applicant: View, Inc.
    Inventors: Abhishek Anant Dixit, Todd William Martin, Anshu A. Pradhan, Fabian Strong, Robert T. Rozbicki
  • Publication number: 20220244609
    Abstract: Bus bar configurations and fabrication methods for non-rectangular shaped (e.g., triangular, trapezoidal, circular, pentagonal, hexagonal, arched, etc.) optical devices.
    Type: Application
    Filed: April 7, 2022
    Publication date: August 4, 2022
    Inventors: Abhishek Anant Dixit, Todd William Martin, Anshu A. Pradhan, Gordon E. Jack, Yashraj Bhatnagar
  • Publication number: 20220187671
    Abstract: This disclosure provides connectors for smart windows. A smart window may incorporate an optically switchable pane. In one aspect, a window unit includes an insulated glass unit including an optically switchable pane. A wire assembly may be attached to the edge of the insulated glass unit and may include wires in electrical communication with electrodes of the optically switchable pane. A floating connector may be attached to a distal end of the wire assembly. The floating connector may include a flange and a nose, with two holes in the flange for affixing the floating connector to a first frame. The nose may include a terminal face that present two exposed contacts of opposite polarity. Pre-wired spacers improve fabrication efficiency and seal integrity of insulated glass units. Electrical connection systems include those embedded in the secondary seal of the insulated glass unit.
    Type: Application
    Filed: October 14, 2021
    Publication date: June 16, 2022
    Inventors: Stephen Clark Brown, Dhairya Shrivastava, David Walter Groechel, Anshu A. Pradhan, Gordon E. Jack, Disha Mehtani, Robert T. Rozbicki
  • Publication number: 20220179273
    Abstract: Various embodiments herein relate to electrochromic windows that are bird friendly, as well as methods and apparatus for forming such windows. Bird friendly windows include one or more elements that make the window visible to birds so that the birds recognize that they cannot fly through the window. An electrochromic window includes one or more transparent substrates, wherein at least one of the substrates is an electrochromic (EC) lite including an electrochromic device and a pattern formed on at least one of the substrates by a laser, the pattern including a first feature configured to provide a set of optical properties different than optical properties of the transparent substrate. The set of optical properties includes one or more characteristics of refractivity, reflectivity and diffraction.
    Type: Application
    Filed: February 23, 2022
    Publication date: June 9, 2022
    Inventors: John Gordon Halbert Mathew, Robert T. Rozbicki, Luis Vidal Ponce Cabrera, Anshu A. Pradhan, Abhishek Anant Dixit, Eithan Ritz
  • Patent number: 11333948
    Abstract: Bus bar configurations and fabrication methods for non-rectangular shaped (e.g., triangular, trapezoidal, circular, pentagonal, hexagonal, arched, etc.) optical devices.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: May 17, 2022
    Assignee: View, Inc.
    Inventors: Abhishek Anant Dixit, Todd Martin, Anshu A. Pradhan, Gordon Jack, Yashraj Bhatnagar
  • Publication number: 20220137472
    Abstract: Embodiments described include adhesive bus bars for electrochromic or other optical state changing devices. The bus bars are configured to color match and/or provide minimal optical contrast with their surrounding environment in the optical device, provide better adhesion than ink based bus bars, as well as obviate the need to mitigate defects in underlaying layers.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 5, 2022
    Applicant: View, Inc.
    Inventors: Robin Friedman, Anshu A. Pradhan, Imran Khan, Illayathambi Kunadian, Robert T. Rozbicki, Zoran Topalovic
  • Patent number: 11307475
    Abstract: Various embodiments herein relate to electrochromic windows that are bird friendly, as well as methods and apparatus for forming such windows. Bird friendly windows include one or more elements that make the window visible to birds so that the birds recognize that they cannot fly through the window. An electrochromic window includes one or more transparent substrates, wherein at least one of the substrates is an electrochromic (EC) lite including an electrochromic device and a pattern formed on at least one of the substrates by a laser, the pattern including a first feature configured to provide a set of optical properties different than optical properties of the transparent substrate. The set of optical properties includes one or more characteristics of refractivity, reflectivity and diffraction.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: April 19, 2022
    Assignee: View, Inc.
    Inventors: John Gordon Halbert Mathew, Robert T. Rozbicki, Luis Vidal Ponce Cabrera, Anshu A. Pradhan, Abhishek Anant Dixit, Eithan Ritz
  • Publication number: 20220055943
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Inventors: Mark Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy A. Dixon, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20220050348
    Abstract: Certain aspects pertain to methods of fabricating an optical device on a substantially transparent substrate that include a pre-deposition operation that removes a width of lower conductor layer at a distance from the outer edge of the substrate to form a pad at the outer edge. The pad and any deposited layers of the optical device may be removed in a post edge deletion operation.
    Type: Application
    Filed: June 24, 2021
    Publication date: February 17, 2022
    Applicant: View, Inc.
    Inventors: Abhishek Anant Dixit, Todd William Martin, Anshu A. Pradhan
  • Publication number: 20220043317
    Abstract: Controllers and control methods apply a drive voltage to bus bars of a thin film optically switchable device. The applied drive voltage is provided at a level that drives a transition over the entire surface of the optically switchable device but does not damage or degrade the device. This applied voltage produces an effective voltage at all locations on the face of the device that is within a bracketed range. The upper bound of this range is associated with a voltage safely below the level at which the device may experience damage or degradation impacting its performance in the short term or the long term. At the lower boundary of this range is an effective voltage at which the transition between optical states of the device occurs relatively rapidly. The level of voltage applied between the bus bars is significantly greater than the maximum value of the effective voltage within the bracketed range.
    Type: Application
    Filed: December 23, 2020
    Publication date: February 10, 2022
    Inventors: Anshu A. Pradhan, Disha Mehtani, Gordon Jack
  • Publication number: 20220032584
    Abstract: Methods of manufacturing electrochromic windows are described. Insulated glass units (IGU's) are protected, e.g. during handling and shipping, by a protective bumper. The bumper can be custom made using IGU dimension data received from the IGU fabrication tool. The bumper may be made of environmentally friendly materials. Laser isolation configurations and related methods of patterning and/or configuring an electrochromic device on a substrate are described. Edge deletion is used to ensure a good seal between spacer and glass in an IGU and thus better protection of an electrochromic device sealed in the IGU. Configurations for protecting the electrochromic device edge in the primary seal and maximizing viewable area in an electrochromic pane of an IGU are also described.
    Type: Application
    Filed: June 11, 2021
    Publication date: February 3, 2022
    Applicant: View, Inc.
    Inventors: Ronald M. Parker, Robert T. Rozbicki, Yashraj Bhatnagar, Abhishek Anant Dixit, Anshu A. Pradhan
  • Publication number: 20220034156
    Abstract: Thin-film devices, for example, multi-zone electrochromic windows, and methods of manufacturing are described. In certain cases, a multi-zone electrochromic window comprises a monolithic EC device on a transparent substrate and two or more tinting zones, wherein the tinting zones are configured for independent operation.
    Type: Application
    Filed: June 10, 2021
    Publication date: February 3, 2022
    Applicant: View, Inc.
    Inventors: Dhairya Shrivastava, Robin Friedman, Vinod Khosla, Rao Mulpuri, Anshu A. Pradhan
  • Publication number: 20220019114
    Abstract: Embodiments described include adhesive bus bars for electrochromic or other optical state changing devices. The bus bars are configured to color match and/or provide minimal optical contrast with their surrounding environment in the optical device, provide better adhesion than ink based bus bars, as well as obviate the need to mitigate defects in underlaying layers.
    Type: Application
    Filed: November 26, 2019
    Publication date: January 20, 2022
    Applicant: View, Inc.
    Inventors: Robin Friedman, Anshu A. Pradhan, Imran Khan, Illayathambi Kunadian, Robert T. Rozbicki, Zoran Topalovic