Patents by Inventor Anthony J. Lochtefeld

Anthony J. Lochtefeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7259388
    Abstract: The benefits of strained semiconductors are combined with silicon-on-insulator approaches to substrate and device fabrication.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: August 21, 2007
    Assignee: AmberWave Systems Corporation
    Inventors: Thomas A. Langdo, Matthew T. Currie, Richard Hammond, Anthony J. Lochtefeld, Eugene A. Fitzgerald
  • Patent number: 7208332
    Abstract: Oxidation methods, which avoid consuming undesirably large amounts of surface material in Si/SiGe heterostructure-based wafers, replace various intermediate CMOS thermal oxidation steps. First, by using oxide deposition methods, arbitrarily thick oxides may be formed with little or no consumption of surface silicon. These oxides, such as screening oxide and pad oxide, are formed by deposition onto, rather than reaction with and consumption of the surface layer. Alternatively, oxide deposition is preceded by a thermal oxidation step of short duration, e.g., rapid thermal oxidation. Here, the short thermal oxidation consumes little surface Si, and the Si/oxide interface is of high quality. The oxide may then be thickened to a desired final thickness by deposition. Furthermore, the thin thermal oxide may act as a barrier layer to prevent contamination associated with subsequent oxide deposition.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: April 24, 2007
    Assignee: AmberWave Systems Corporation
    Inventors: Matthew T. Currie, Anthony J. Lochtefeld
  • Patent number: 7202121
    Abstract: Oxidation methods, which avoid consuming undesirably large amounts of surface material in Si/SiGe heterostructure-based wafers, replace various intermediate CMOS thermal oxidation steps. First, by using oxide deposition methods, arbitrarily thick oxides may be formed with little or no consumption of surface silicon. These oxides, such as screening oxide and pad oxide, are formed by deposition onto, rather than reaction with and consumption of the surface layer. Alternatively, oxide deposition is preceded by a thermal oxidation step of short duration, e.g., rapid thermal oxidation. Here, the short thermal oxidation consumes little surface Si, and the Si/oxide interface is of high quality. The oxide may then be thickened to a desired final thickness by deposition. Furthermore, the thin thermal oxide may act as a barrier layer to prevent contamination associated with subsequent oxide deposition.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: April 10, 2007
    Assignee: AmberWave Systems Corporation
    Inventors: Matthew T. Currie, Anthony J. Lochtefeld
  • Patent number: 7138649
    Abstract: A semiconductor structure having a substrate with a surface layer including strained silicon. The surface layer has a first region with a first thickness less than a second thickness of a second region. A gate dielectric layer is disposed over a portion of at least the first surface layer region.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: November 21, 2006
    Assignee: AmberWave Systems Corporation
    Inventors: Matthew T. Currie, Anthony J. Lochtefeld, Eugene A. Fitzgerald
  • Patent number: 7138310
    Abstract: A semiconductor structure includes a strain-inducing substrate layer having a germanium concentration of at least 10 atomic %. The semiconductor structure also includes a compressively strained layer on the strain-inducing substrate layer. The compressively strained layer has a germanium concentration at least approximately 30 percentage points greater than the germanium concentration of the strain-inducing substrate layer, and has a thickness less than its critical thickness. The semiconductor structure also includes a tensilely strained layer on the compressively strained layer. The tensilely strained layer may be formed from silicon having a thickness less than its critical thickness.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: November 21, 2006
    Assignee: AmberWave Systems Corporation
    Inventors: Matthew T. Currie, Anthony J. Lochtefeld, Christopher W. Leitz, Eugene A. Fitzgerald
  • Patent number: 7122449
    Abstract: Methods for fabricating facetless semiconductor structures using commercially available chemical vapor deposition systems are disclosed herein. A key aspect of the invention includes selectively depositing an epitaxial layer of at least one semiconductor material on the semiconductor substrate while in situ doping the epitaxial layer to suppress facet formation. Suppression of faceting during selective epitaxial growth by in situ doping of the epitaxial layer at a predetermined level rather than by manipulating spacer composition and geometry alleviates the stringent requirements on the device design and increases tolerance to variability during the spacer fabrication.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: October 17, 2006
    Assignee: Amberwave Systems Corporation
    Inventors: Thomas A. Langdo, Anthony J. Lochtefeld
  • Patent number: 7109516
    Abstract: The benefits of strained semiconductors are combined with silicon-on-insulator approaches to substrate and device fabrication.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: September 19, 2006
    Assignee: AmberWave Systems Corporation
    Inventors: Thomas A. Langdo, Matthew T. Currie, Glyn Braithwaite, Richard Hammond, Anthony J. Lochtefeld, Eugene A. Fitzgerald
  • Patent number: 7074655
    Abstract: In forming an electronic device, a semiconductor layer is pre-doped and a dopant distribution anneal is performed prior to gate definition. Alternatively, the gate is formed from a metal. Subsequently formed shallow sources and drains, therefore, are not affected by the gate annealing step.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: July 11, 2006
    Assignee: AmberWave Systems Corporation
    Inventors: Anthony J. Lochtefeld, Dimitri Antoniadis, Matthew T. Currie
  • Patent number: 7074623
    Abstract: The benefits of strained semiconductors are combined with silicon-on-insulator approaches to substrate and device fabrication.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: July 11, 2006
    Assignee: AmberWave Systems Corporation
    Inventors: Anthony J. Lochtefeld, Thomas A. Langdo, Richard Hammond, Matthew T. Currie, Glyn Braithwaite, Eugene A. Fitzgerald
  • Patent number: 7071014
    Abstract: Oxidation methods, which avoid consuming undesirably large amounts of surface material in Si/SiGe heterostructure-based wafers, replace various intermediate CMOS thermal oxidation steps. First, by using oxide deposition methods, arbitrarily thick oxides may be formed with little or no consumption of surface silicon. These oxides, such as screening oxide and pad oxide, are formed by deposition onto, rather than reaction with and consumption of the surface layer. Alternatively, oxide deposition is preceded by a thermal oxidation step of short duration, e.g., rapid thermal oxidation. Here, the short thermal oxidation consumes little surface Si, and the Si/oxide interface is of high quality. The oxide may then be thickened to a desired final thickness by deposition. Furthermore, the thin thermal oxide may act as a barrier layer to prevent contamination associated with subsequent oxide deposition.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: July 4, 2006
    Assignee: AmberWave Systems Corporation
    Inventors: Matthew T. Currie, Anthony J. Lochtefeld
  • Patent number: 6995430
    Abstract: The benefits of strained semiconductors are combined with silicon-on-insulator approaches to substrate and device fabrication.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: February 7, 2006
    Assignee: AmberWave Systems Corporation
    Inventors: Thomas A. Langdo, Matthew T. Currie, Richard Hammond, Anthony J. Lochtefeld, Eugene A. Fitzgerald
  • Patent number: 6991972
    Abstract: In forming an electronic device, a semiconductor layer is pre-doped and a dopant distribution anneal is performed prior to gate definition. Alternatively, the gate is formed from a metal. Subsequently formed shallow sources and drains, therefore, are not affected by the gate annealing step.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: January 31, 2006
    Assignee: AmberWave Systems Corporation
    Inventors: Anthony J. Lochtefeld, Dimitri Antoniadis, Matthew T. Currie
  • Patent number: 6960781
    Abstract: A structure including a transistor and a trench structure, with the trench structure inducing only a portion of the strain in a channel region of the transistor.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: November 1, 2005
    Assignee: Amberwave Systems Corporation
    Inventors: Matthew T. Currie, Anthony J. Lochtefeld
  • Patent number: 6946371
    Abstract: Methods for fabricating facetless semiconductor structures using commercially available chemical vapor deposition systems are disclosed herein. A key aspect of the invention includes selectively depositing an epitaxial layer of at least one semiconductor material on the semiconductor substrate while in situ doping the epitaxial layer to suppress facet formation. Suppression of faceting during selective epitaxial growth by in situ doping of the epitaxial layer at a predetermined level rather than by manipulating spacer composition and geometry alleviates the stringent requirements on the device design and increases tolerance to variability during the spacer fabrication.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: September 20, 2005
    Assignee: Amberwave Systems Corporation
    Inventors: Thomas A. Langdo, Anthony J. Lochtefeld
  • Patent number: 6891209
    Abstract: DRAM trench capacitors formed by, inter alia, deposition of conductive material into a trench or doping the semiconductor region in which the trench is defined.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: May 10, 2005
    Assignee: AmberWave Systems Corporation
    Inventors: Mayank Bulsara, Matthew T. Currie, Anthony J. Lochtefeld
  • Patent number: 6838728
    Abstract: Semiconductor-based devices, and methods for making the devices, involve a first device that includes a buried channel layer, a dielectric layer, and a compositionally graded spacer layer. The spacer layer includes a first material and a second material, and is located between the buried channel layer and the dielectric layer. A second device includes a buried channel layer, a relaxed surface layer, and a spacer layer located between the buried channel layer and the relaxed surface layer. The spacer layer has a composition that is different from a composition of the relaxed layer. The spacer layer and the relaxed surface layer each have bandgap offsets relative to the buried channel layer to reduce a parasitic channel conduction. A substrate for fabrication of devices, and methods for making the substrate, involves a substrate that includes a first layer, such as a silicon wafer, a substantially uniform second layer, and a graded-composition third layer.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: January 4, 2005
    Assignee: AmberWave Systems Corporation
    Inventors: Anthony J. Lochtefeld, Eugene A. Fitzgerald
  • Publication number: 20040173812
    Abstract: A structure including a transistor and a trench structure, with the trench structure inducing only a portion of the strain in a channel region of the transistor.
    Type: Application
    Filed: March 5, 2004
    Publication date: September 9, 2004
    Applicant: AmberWave Systems Corporation
    Inventors: Matthew T. Currie, Anthony J. Lochtefeld
  • Publication number: 20040137685
    Abstract: In forming an electronic device, a semiconductor layer is pre-doped and a dopant distribution anneal is performed prior to gate definition. Alternatively, the gate is formed from a metal. Subsequently formed shallow sources and drains, therefore, are not affected by the gate annealing step.
    Type: Application
    Filed: October 22, 2003
    Publication date: July 15, 2004
    Applicant: AmberWave Systems Corporation
    Inventors: Anthony J. Lochtefeld, Dimitri Antoniadis, Matthew T. Currie
  • Publication number: 20040115916
    Abstract: Misfit dislocations are selectively placed in layers formed over substrates. Thicknesses of layers may be used to define distances between misfit dislocations and surfaces of layers formed over substrates, as well as placement of misfit dislocations and dislocation arrays with respect to devices subsequently formed on the layers.
    Type: Application
    Filed: July 29, 2003
    Publication date: June 17, 2004
    Applicant: AmberWave Systems Corporation
    Inventors: Anthony J. Lochtefeld, Christopher W. Leitz, Matthew T. Currie, Mayank Bulsara
  • Publication number: 20040092051
    Abstract: Oxidation methods, which avoid consuming undesirably large amounts of surface material in Si/SiGe heterostructure-based wafers, replace various intermediate CMOS thermal oxidation steps. First, by using oxide deposition methods, arbitrarily thick oxides may be formed with little or no consumption of surface silicon. These oxides, such as screening oxide and pad oxide, are formed by deposition onto, rather than reaction with and consumption of the surface layer. Alternatively, oxide deposition is preceded by a thermal oxidation step of short duration, e.g., rapid thermal oxidation. Here, the short thermal oxidation consumes little surface Si, and the Si/oxide interface is of high quality. The oxide may then be thickened to a desired final thickness by deposition. Furthermore, the thin thermal oxide may act as a barrier layer to prevent contamination associated with subsequent oxide deposition.
    Type: Application
    Filed: October 30, 2003
    Publication date: May 13, 2004
    Applicant: AmberWave Systems Corporation
    Inventors: Matthew T. Currie, Anthony J. Lochtefeld