Patents by Inventor Anthony P. Burgard

Anthony P. Burgard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170073691
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 3-hydroxyisobutyrate or MAA. Also provided herein are methods for using such an organism to produce 3-hydroxyisobutyrate or MAA.
    Type: Application
    Filed: April 19, 2016
    Publication date: March 16, 2017
    Inventors: Anthony P. BURGARD, Robin E. OSTERHOUT, Stephen J. VAN DIEN, Cara Ann TRACEWELL, Priti PHARKYA, Stefan ANDRAE
  • Publication number: 20170044572
    Abstract: The invention provides non-naturally occurring microbial organisms having a butadiene pathway. The invention additionally provides methods of using such organisms to produce butadiene.
    Type: Application
    Filed: March 23, 2016
    Publication date: February 16, 2017
    Inventors: Mark J. BURK, Anthony P. BURGARD, Jun SUN, Robin E. OSTERHOUT, Priti PHARKYA
  • Patent number: 9556461
    Abstract: The invention provides non-naturally occurring microbial organisms having a toluene, benzene, p-toluate, terephthalate, (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate, (2-hydroxy-4-oxobutoxy)phosphonate, benzoate, styrene, 2,4-pentadienoate, 3-butene-1ol or 1,3-butadiene pathway. The invention additionally provides methods of using such organisms to produce toluene, benzene, p-toluate, terephthalate, (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate, (2-hydroxy-4-oxobutoxy)phosphonate, benzoate, styrene, 2,4-pentadienoate, 3-butene-1ol or 1,3-butadiene.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: January 31, 2017
    Assignee: Genomatica, Inc.
    Inventors: Robin E. Osterhout, Anthony P. Burgard, Priti Pharkya, Mark J. Burk
  • Publication number: 20170022524
    Abstract: The invention provides a non-naturally occurring microbial biocatalyst including a microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway having at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, or ?-ketoglutarate decarboxylase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce monomeric 4-hydroxybutanoic acid (4-HB).
    Type: Application
    Filed: February 29, 2016
    Publication date: January 26, 2017
    Inventors: Mark J. BURK, Stephen J. VAN DIEN, Anthony P. BURGARD, Wei NIU
  • Publication number: 20170008828
    Abstract: The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.
    Type: Application
    Filed: June 14, 2016
    Publication date: January 12, 2017
    Inventors: Mark J. Burk, Priti Pharkya, Stephen J. Van Dien, Anthony P. Burgard, Christophe H. Schilling
  • Publication number: 20160376600
    Abstract: The invention provides non-naturally occurring microbial organisms having a formaldehyde fixation pathway, a formate assimilation pathway, and/or a methanol metabolic pathway in combination with a fatty alcohol, fatty aldehyde, fatty acid or isopropanol pathway, wherein the microbial organisms selectively produce a fatty alcohol, fatty aldehyde or fatty acid of a specified length or isopropanol. The microbial organisms provided advantageously enhance the production of substrates and/or pathway intermediates for the production of chain length specific fatty alcohols, fatty aldehydes, fatty acids or isopropanol. In some aspects, the microbial organisms of the invention have select gene disruptions or enzyme attenuations that increase production of fatty alcohols, fatty aldehydes or fatty acids. The invention additionally provides methods of using the above microbial organisms to produce a fatty alcohol, a fatty aldehyde, a fatty acid or isopropanol.
    Type: Application
    Filed: November 25, 2014
    Publication date: December 29, 2016
    Inventors: Robin E. OSTERHOUT, Anthony P. BURGARD, Priti PHARKYA, Stefan ANDRAE
  • Publication number: 20160376614
    Abstract: The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO), 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway comprising at least one exogenous nucleic acid encoding a BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway enzyme expressed in a sufficient amount to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 29, 2016
    Inventors: Robert HASELBECK, John D. TRAWICK, Wei NIU, Anthony P. BURGARD
  • Publication number: 20160355845
    Abstract: The invention provides a non-naturally occurring microbial organism having a microbial organism having at least one exogenous gene insertion and/or one or more gene disruptions that confer production of primary alcohols. A method for producing long chain alcohols includes culturing these non-naturally occurring microbial organisms.
    Type: Application
    Filed: January 4, 2016
    Publication date: December 8, 2016
    Inventors: Jun SUN, Anthony P. BURGARD, Priti PHARKYA
  • Publication number: 20160355846
    Abstract: The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO.
    Type: Application
    Filed: May 6, 2016
    Publication date: December 8, 2016
    Inventors: Stephen J. VAN DIEN, Anthony P. BURGARD, Robert HASELBECK, Catherine J. PUJOL-BAXLEY, Wei NIU, John D. TRAWICK, Harry YIM, Mark J. BURK, Robin E. OSTERHOUT, Jun SUN
  • Publication number: 20160355855
    Abstract: The invention provides non-naturally occurring microbial organisms containing caprolactone pathways having at least one exogenous nucleic acid encoding a butadiene pathway enzyme expressed in a sufficient amount to produce caprolactone. The invention additionally provides methods of using such microbial organisms to produce caprolactone by culturing a non-naturally occurring microbial organism containing caprolactone pathways as described herein under conditions and for a sufficient period of time to produce caprolactone.
    Type: Application
    Filed: January 13, 2016
    Publication date: December 8, 2016
    Inventors: Anthony P. BURGARD, Robin E. OSTERHOUT, Priti PHARKYA, Mark J. BURK
  • Publication number: 20160326553
    Abstract: The invention is directed to a non-naturally occurring microbial organism comprising a first attenuation of a succinyl-CoA synthetase or transferase and at least a second attenuation of a succinyl-CoA converting enzyme or a gene encoding a succinate producing enzyme within a multi-step pathway having a net conversion of succinyl-CoA to succinate.
    Type: Application
    Filed: December 23, 2014
    Publication date: November 10, 2016
    Applicant: GENOMATICA, INC.
    Inventors: Anthony P. BURGARD, Robin E. OSTERHOUT, Stephen J. VAN DIEN, Priti PHARKYA, Tae Hoon YANG, Jungik CHOI
  • Patent number: 9487803
    Abstract: The invention provides a non-naturally occurring microbial biocatalyst including a microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway having at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, or ?-ketoglutarate decarboxylase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce monomeric 4-hydroxybutanoic acid (4-HB).
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: November 8, 2016
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Stephen J. Van Dien, Anthony P. Burgard, Wei Niu
  • Publication number: 20160319313
    Abstract: The invention provides non-naturally occurring microbial organisms comprising 1,4-butanediol (14-BDO) and gamma-butyrolactone (GBL) pathways comprising at least one exogenous nucleic acid encoding a 14-BDO and GBL pathway enzyme expressed in a sufficient amount to produce 14-BDO and GBL. The invention additionally provides methods of using such microbial organisms to produce 14-BDO and GBL.
    Type: Application
    Filed: November 30, 2015
    Publication date: November 3, 2016
    Inventors: Jun SUN, Mark J. BURK, Anthony P. BURGARD, Robin E. OSTERHOUT, Wei NIU, John D. TRAWICK, Robert HASELBECK
  • Patent number: 9458480
    Abstract: The invention provides a non-naturally occurring microbial organism having a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The invention additionally provides a method for producing 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid. The method can include culturing a 6-aminocaproic acid, caprolactam or hexametheylenediamine producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: October 4, 2016
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya
  • Publication number: 20160264978
    Abstract: The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO), 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway comprising at least one exogenous nucleic acid encoding a BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway enzyme expressed in a sufficient amount to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine.
    Type: Application
    Filed: February 8, 2016
    Publication date: September 15, 2016
    Inventors: Anthony P. BURGARD, Robin E. OSTERHOUT, Jun SUN, Priti PHARKYA
  • Patent number: 9434964
    Abstract: The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: September 6, 2016
    Assignee: Genomatica, Inc.
    Inventors: Stephen J. Van Dien, Anthony P. Burgard, Robert Haselbeck, Catherine J. Pujol-Baxley, Wei Niu, John D. Trawick, Harry Yim, Mark J. Burk, Robin E. Osterhout, Jun Sun
  • Publication number: 20160244786
    Abstract: The invention provides non-naturally occurring microbial organisms having a butadiene or crotyl alcohol pathway. The invention additionally provides methods of using such organisms to produce butadiene or crotyl alcohol.
    Type: Application
    Filed: September 29, 2015
    Publication date: August 25, 2016
    Inventors: Mark J. BURK, Anthony P. BURGARD, Robin E. OSTERHOUT, Jun SUN, Priti PHARKYA
  • Publication number: 20160230195
    Abstract: The invention provides non-naturally occurring microbial organisms containing 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol pathways comprising at least one exogenous nucleic acid encoding a butadiene pathway enzyme expressed in a sufficient amount to produce 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol. The invention additionally provides methods of using such microbial organisms to produce 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol, by culturing a non-naturally occurring microbial organism containing 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol pathways as described herein under conditions and for a sufficient period of time to produce 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol, crotyl alcohol or 3-buten-1-ol.
    Type: Application
    Filed: November 6, 2015
    Publication date: August 11, 2016
    Inventors: Robin E. OSTERHOUT, Anthony P. BURGARD, Mark J. BURK
  • Publication number: 20160208293
    Abstract: The invention provides a non-naturally occurring microbial organism having a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid pathway. The invention additionally provides a method for producing 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid. The method can include culturing a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid producing microbial organism expressing at least one exogenous nucleic acid encoding a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid pathway enzyme in a sufficient amount and culturing under conditions and for a sufficient period of time to produce 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid.
    Type: Application
    Filed: December 1, 2014
    Publication date: July 21, 2016
    Inventors: Anthony P. Burgard, Mark J. Burk, Robin E. Osterhout, Priti Pharkya
  • Patent number: 9382556
    Abstract: The invention provides a non-naturally occurring microbial organism having an adipate, 6-aminocaproic acid or caprolactam pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective adipate, 6-aminocaproic acid or caprolactam pathway. The invention additionally provides a method for producing adipate, 6-aminocaproic acid or caprolactam. The method can include culturing an adipate, 6-aminocaproic acid or caprolactam producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an adipate, 6-aminocaproic acid or caprolactam pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce adipate, 6-aminocaproic acid or caprolactam.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: July 5, 2016
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Priti Pharkya, Robin E. Osterhout