Patents by Inventor Anthony Rogers

Anthony Rogers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10280277
    Abstract: A process for producing a polyester polyol comprising reacting a recycle stream selected from recycled PET carpet, carpet fiber, containers, textiles, articles or mixtures thereof, with a glycol in a reactor, thereby forming a digested product stream comprising polyols, and an undigested stream; and then reacting the digested product stream with a hydrophobe selected from dimer fatty acids, trimer fatty acids, oleic acid, ricinoleic acid, tung oil, corn oil, canola oil, soybean oil, sunflower oil, bacterial oil, yeast oil, algae oil, castor oil, triglycerides or alkyl carboxylate esters having saturated or unsaturated C6-C36 fatty acid units, saturated or unsaturated C6-C36 fatty acids, alkoxylated castor oil, saturated or unsaturated C9-C18 dicarboxylic acids or diols, cardanol-based products, recycled cooking oil, branched or linear C6-C36 fatty alcohols, hydroxy-functional materials derived from epoxidized, ozonized, or hydroformylated fatty esters or acids, or mixtures thereof.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: May 7, 2019
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Rick Tabor, Shakti L. Mukerjee, Kevin Anthony Rogers, Adam W. Emerson, Eric David Vrabel, Brian Douglas Phillips
  • Patent number: 10273332
    Abstract: Polyester polyols made from recycled polyethylene terephthalate (rPET) and processes for making them are disclosed. The rPET is heated with a C3-C10 glycol reactant to give a digested intermediate comprising glycols and a terephthalate component, which comprises 45 to 70 wt. % of bis(hydroxyalkyl)terephthalates, and preferably lesser amounts of terephthalate dimers and trimers. Treatment of the digested intermediate with activated carbon gives a polyester polyol having a color index less than 20. The polyols have desirable hydroxyl numbers, viscosities, appearance, and other attributes for formulating polyurethane products and are a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: April 30, 2019
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Rick Tabor, Eric D. Vrabel, Kevin Anthony Rogers, Shakti L. Mukerjee, Matthew J. Beatty, Adam William Emerson, Matthew T. Brown, Jack Rogers Kovsky, Michael D. Kellerman, Michael Robert Christy
  • Publication number: 20190050004
    Abstract: An active surge chamber for use in a paint supply system comprising a paint channel, a fluid chamber connected to a pressurised fluid supply, a diaphragm, a spring, and means responsive to movement of the diaphragm for effecting connection and disconnection of the pressurised fluid supply to the fluid chamber and for relieving pressure of fluid in the chamber. The paint channel is sealingly separated from the fluid chamber by the diaphragm. The spring has a spring rate such that the force exerted on the diaphragm by the spring restricts movement of the diaphragm over a selected range of pump outlet pressures in order to attenuate the movement of the diaphragm and reduce the susceptibility of the system to unwanted oscillation. Pressure fluctuations in a paint flow induced by usage of a reciprocating pump upstream of the active surge chamber are minimised.
    Type: Application
    Filed: November 8, 2016
    Publication date: February 14, 2019
    Inventor: John Anthony Rogers
  • Publication number: 20180237573
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J. Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L. Mukerjee
  • Publication number: 20180232941
    Abstract: Methods, systems and user interfaces enhance an augmented reality experience of a user having freedom of movement within an external environment. A local user interface is created and displayed to the user in a first viewable region. A global user interface is created and displayed to the user in a second viewable region, further from the user than the first viewable region. The local user interface is maintained at a first spatial position, the first spatial position being stationary with respect to a part of the user's body; and the global user interface is maintained at a second spatial position, the second spatial position being stationary with respect to the external environment.
    Type: Application
    Filed: February 10, 2017
    Publication date: August 16, 2018
    Applicant: Sony Interactive Entertainment LLC
    Inventors: Tsubasa Tsukahara, Anthony Rogers, Hironobu Aoki
  • Patent number: 9992092
    Abstract: A method and system for analyzing and measuring multiple sources of data over a communications network (18) so as to ascertain information or usage of one or more resources, such as resource servers (2). A data collection and processing means (20) collects and processes the data sources which are forwarded to a reporting server (34) as a combined data source made available to interested parties.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: June 5, 2018
    Assignee: comScore, Inc.
    Inventors: Lim Or Sim, Yee Han Cheong, Andrew Lawrence Jarrett, Shefik Bey, Anthony Roger Eustace, Matthew James Petit
  • Patent number: 9988489
    Abstract: Polyester polyols, processes for making them, and applications for the polyols are disclosed. In some aspects, the polyols comprise recurring units from a thermoplastic polyester or an aromatic polyacid source, a glycol, and a lignin, tannin, or mixture thereof. Optionally, the polyols incorporate recurring units of a hydrophobe. The polyols are made in one or multiple steps; in some aspects, the thermoplastic polyester or aromatic polyacid source and the glycol are reacted first, followed by reaction with the lignin, tannin, or mixture thereof. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including two-component polyurethane coatings, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: June 5, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Shakti Mukerjee, Kevin Anthony Rogers, Matthew James Beatty, Gary E. Spilman
  • Patent number: 9965029
    Abstract: There is provided an image processing apparatus including a setting unit configured to set a display mode corresponding to a posture of a user on the basis of posture information indicating the posture of the head of the user.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: May 8, 2018
    Assignees: SONY CORPORATION, SONY NETWORK ENTERTAINMENT INTERNATIONAL LLC
    Inventors: Jun Kimura, Tsubasa Tsukahara, Anthony Rogers
  • Patent number: 9951171
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: April 24, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L Mukerjee
  • Publication number: 20180103237
    Abstract: Implementations generally relate to virtual reality telepresence. In some implementations, a method includes performing projection mapping of a projection area. The method further includes collecting user information associated with a user. The method further includes positioning the user in a virtual environment based on the projection mapping and the user information. The method further includes determining a point of view of the user in the virtual environment. The method further includes projecting the virtual environment onto the projection area based on the point of view of the user.
    Type: Application
    Filed: October 11, 2016
    Publication date: April 12, 2018
    Applicant: SONY INTERACTIVE ENTERTAINMENT NETWORK AMERICA LLC
    Inventors: Allison Marlene Chaney, Anthony Rogers
  • Publication number: 20180066174
    Abstract: A drilling fluid comprising a carrier fluid, an aromatic polyester polyol and an additive selected from a thickener, a wetting agent, an emulsifier, a weighting agent, a pH control agent, a lubricant or mixtures thereof.
    Type: Application
    Filed: March 16, 2016
    Publication date: March 8, 2018
    Inventors: Shakti L. Mukerjee, Kevin Anthony Rogers, Rick Tabor
  • Publication number: 20180066106
    Abstract: Polyester polyols made from thermoplastic polyesters are disclosed. The polyols can be made by heating a thermoplastic polyester such as virgin PET, recycled PET, or mixtures thereof, with a glycol to give a digested intermediate, which is then condensed with a dimer fatty acid to give the polyol. The invention includes a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid. The polyester polyol can also be made in a single step by reacting the thermoplastic polyester, glycol, and dimer acid under conditions effective to produce the polyol. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Application
    Filed: November 7, 2017
    Publication date: March 8, 2018
    Inventors: Shakti L. Mukerjee, Rick Tabor, Adam William Emerson, Kevin Anthony Rogers, Eric D. Vrabel, Matthew T. Brown, Matthew J. Beatty, Jack Rogers Kovsky, Michael D. Kellerman, Michael Robert Christy
  • Patent number: 9903360
    Abstract: A novel changeover mechanism for a compressed air driven double diaphragm pump comprises a shaft slidably mounted through aligned apertures in opposing surfaces of the twin diaphragm chambers. At the center of the shaft between the two diaphragm chambers is provided an annular notch in to which is located an arm extending from a U shaped frame. The U shaped frame is pivotally mounted atop a valve plate which includes multiple ports. Positioned against a surface of the valve plate is a valve closure component which is configured to slide across the surface selectively obstructing the multiple ports. The valve closure component is held in place by a metal peg hingedly mounted in slots provided in parallel extension of the U shaped frame. Linear tension springs connect the hinged wire pusher with U shaped frame adjacent the pivot point. The springs bias the position of the valve closure component against the valve plate in an off center position.
    Type: Grant
    Filed: September 4, 2016
    Date of Patent: February 27, 2018
    Assignee: Carlisle Fluid Technologies, Inc.
    Inventor: John Anthony Rogers
  • Patent number: 9896540
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: February 20, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L Mukerjee
  • Patent number: 9890243
    Abstract: The present invention relates to polymeric plasticizer compositions made from an aromatic acid source, a glycol, and a C4-C36 monocarboxylic acid, or ester or anhydride thereof. The aromatic acid source can include polymeric materials such as recycled polyethylene terephthalate (PET). The present invention also relates to methods for making the polymeric plasticizer compositions, to methods of plasticizing polymeric materials, and to plasticized polymeric compositions. The polymeric plasticizers are useful for plasticizing various polymers, such as thermoplastic polymers, including, for example, polyvinyl chloride (PVC). The polymeric plasticizers provide a sustainable alternative to conventional phthalate ester plasticizers, such as diisooctyl phthalate (DOP).
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: February 13, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Woo-Sung Bae, Rick Tabor, Kevin Anthony Rogers, Shakti L. Mukerjee
  • Patent number: 9884938
    Abstract: The present invention relates to polymeric plasticizer compositions made from an aromatic acid source, a glycol, and a C4-C36 monocarboxylic acid, or ester or anhydride thereof. The aromatic acid source can include polymeric materials such as recycled polyethylene terephthalate (PET). The present invention also relates to methods for making the polymeric plasticizer compositions, to methods of plasticizing polymeric materials, and to plasticized polymeric compositions. The polymeric plasticizers are useful for plasticizing various polymers, such as thermoplastic polymers, including, for example, polyvinyl chloride (PVC). The polymeric plasticizers provide a sustainable alternative to conventional phthalate ester plasticizers, such as diisooctyl phthalate (DOP).
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: February 6, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Woo-Sung Bae, Rick Tabor, Kevin Anthony Rogers, Shakti L. Mukerjee
  • Patent number: 9855178
    Abstract: Described are surgical drapes and system with universal application to heavy equipment useful in operating room environments. Surgical drape systems of the invention are particularly capable of covering patient support machinery such as hoists, lifts, and slings, whether the equipment is mobile or stationary, or configured as a floor-based or as an overhead support/lifting system. The drapes of the current invention provide for protecting the equipment from exposure to surgical biohazard waste e.g.; blood or body fluids, as well as providing the ability to use equipment that is otherwise not presently allowed to enter into an operating room because of the impossibility to render such equipment sterile. The drapes further allow for the holding, lifting and positioning of the patient whole body or limbs while maintaining sterility during prepping and surgical procedures. Also included are support slings for use with the drapes.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: January 2, 2018
    Assignee: The United States of America as Represented by the Department of Veterans Affairs
    Inventor: Kurk Anthony Rogers
  • Patent number: 9840584
    Abstract: Polyester polyols made from thermoplastic polyesters are disclosed. The polyols can be made by heating a thermoplastic polyester such as virgin PET, recycled PET, or mixtures thereof, with a glycol to give a digested intermediate, which is then condensed with a dimer fatty acid to give the polyol. The invention includes a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid. The polyester polyol can also be made in a single step by reacting the thermoplastic polyester, glycol, and dimer acid under conditions effective to produce the polyol. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: December 12, 2017
    Assignee: Resinate Materials Group, Inc.
    Inventors: Shakti L Mukerjee, Rick Tabor, Adam William Emerson, Kevin Anthony Rogers, Eric D Vrabel, Matthew T Brown, Matthew J Beatty, Jack Rogers Kovsky, Michael D Kellerman, Michael Robert Christy
  • Publication number: 20170335057
    Abstract: Polyester polyols, processes for making them, and applications for the polyols are disclosed. In some aspects, the polyols comprise recurring units from a thermoplastic polyester or an aromatic polyacid source, a glycol, and a hydroxy-functional ketal acid, ester or amide. Optionally, the polyols incorporate recurring units of a hydrophobe. The polyols are made in one or multiple steps; in some aspects, the thermoplastic polyester or aromatic polyacid source and the glycol are reacted first, followed by reaction with the hydroxy-functional ketal acid, ester or amide. The resulting polyols have good transparency and little or no particulate settling or phase separation. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, flexible and rigid foams, coatings, adhesives, sealants, and elastomers can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 23, 2017
    Inventors: Rick Tabor, Eric David Vrabel, Kevin Anthony Rogers, Matthew James Beatty, Woo-Sung Bae, Jack Rogers Kovsky, Michael Robert Christy
  • Publication number: 20170327638
    Abstract: Polyester polyols, processes for making them, and applications for the polyols are disclosed. In some aspects, the polyols comprise recurring units from a thermoplastic polyester or an aromatic polyacid source, a glycol, and a lignin, tannin, or mixture thereof. Optionally, the polyols incorporate recurring units of a hydrophobe. The polyols are made in one or multiple steps; in some aspects, the thermoplastic polyester or aromatic polyacid source and the glycol are reacted first, followed by reaction with the lignin, tannin, or mixture thereof. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including two-component polyurethane coatings, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Application
    Filed: July 31, 2017
    Publication date: November 16, 2017
    Inventors: Shakti Mukerjee, Kevin Anthony Rogers, Matthew James Beatty, Gary E. Spilman