Patents by Inventor Anton Devilliers
Anton Devilliers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250123090Abstract: An apparatus for measuring bow of a wafer, includes a substrate holder having a support surface configured to support a wafer; and a capacitor array unit including a plurality of electrodes laterally spaced from one another in the capacitor array unit. Each electrode faces the support surface and is spaced a respective fixed distance from the support surface such that each electrode can form a capacitor with an opposing area of a substrate provided on the support surface of the substrate holder.Type: ApplicationFiled: October 12, 2023Publication date: April 17, 2025Applicant: Tokyo Electron LimitedInventors: Daniel FULFORD, Mark I. GARDNER, Henry Jim FULFORD, Anton DEVILLIERS
-
Publication number: 20250068823Abstract: A method includes receiving a first layout file for a first workpiece and a second layout file for a second workpiece. First layout file and second layout file are analyzed to identify contact points, which are grouped into bins. A contact point of a first bin is simulated using a simulation model. Contact point includes a first feature of the first workpiece and a second feature of the second workpiece. In response to determining that the contact point does not have desired properties, a first layout of the first feature and a second layout of the second feature are updated to determine an updated contact point. Updated contact point is simulated using the simulation model. In response to determining that the updated contact point has the desired properties, first layout file is updated to include updated first layout, and second layout file is updated to include updated second layout.Type: ApplicationFiled: March 25, 2024Publication date: February 27, 2025Inventors: Henry Jim Fulford, Partha Mukhopadhyay, Zuriel CARIBE, Anton deVilliers
-
Patent number: 12099299Abstract: A method for patterning a substrate in which a patterned photoresist structure can be formed on the substrate, the patterned photoresist structure having a sidewall. A conformal layer of spacer material can be deposited on the sidewall. The patterned photoresist structure can then be removed from the substrate, leaving behind the spacer material. Then, the substrate can be directionally etched using the sidewall spacer as an etch mask to form the substrate having a target critical dimension.Type: GrantFiled: July 18, 2023Date of Patent: September 24, 2024Assignee: Tokyo Electron LimitedInventors: Jodi Grzeskowiak, Anthony Schepis, Anton Devilliers
-
Publication number: 20240289529Abstract: A method of designing a standard cell layout includes determining a performance metric for the standard cell layout and executing an artificial intelligence (AI) algorithm. The executing of the AI algorithm includes extracting out a parameter of the standard cell layout having a different weighting with respect to optimizing the performance metric, adjusting the parameters of the standard cell layout, evaluating the performance metric based on the adjusted parameter of the standard cell layout, and continuing to adjust the one or more parameters until the performance metric reaches a desired value.Type: ApplicationFiled: February 23, 2024Publication date: August 29, 2024Inventors: Jeffrey Smith, David Power, Anton deVilliers
-
Publication number: 20240203778Abstract: A method includes providing a carrier substrate having a die bonded thereto, where the die includes a first alignment mark on a first surface. The method includes positioning a target substrate with a second surface on a substrate stage, where the target substrate includes a second alignment mark on the second surface. The method includes positioning the carrier substrate with respect to a die handler, where the die handler includes a third alignment mark. The method includes coupling the die to the die handler, where the step of coupling includes aligning the first alignment mark with the third alignment mark. The method includes positioning the coupled die and the die handler over the target substrate, where the step of positioning includes aligning the second alignment mark with at least one of the first alignment mark and the third alignment mark. The method includes bonding the first surface with the second surface.Type: ApplicationFiled: December 20, 2022Publication date: June 20, 2024Applicant: Tokyo Electron LimitedInventors: David POWER, David CONKLIN, Anthony SCHEPIS, Andrew WELOTH, Anton DEVILLIERS
-
Publication number: 20240203797Abstract: Aspects of the present disclosure provide a bonding device for bonding two wafers. For example, the bonding device can include a first bonding chuck and a second bonding chuck. The first bonding chuck can have a first bonding head for a first wafer to be mounted thereon. The second bonding chuck can have a plurality of second bonding heads for a second wafer to be mounted thereon. The second bonding heads can be controlled individually to apply local pressures onto the second wafer to move the second wafer toward the first wafer to bond the second wafer to the first wafer, the local pressures corresponding to bow measurement of the first wafer and the second wafer.Type: ApplicationFiled: December 14, 2022Publication date: June 20, 2024Applicant: Tokyo Electron LimitedInventors: Andrew WELOTH, Daniel FULFORD, Anthony SCHEPIS, Mark I. GARDNER, H. Jim FULFORD, Anton DEVILLIERS, David CONKLIN
-
Patent number: 12014984Abstract: A method for forming a semiconductor apparatus includes forming a plurality of repetitive initial structures over a substrate of the semiconductor apparatus. An initial structure in the plurality of repetitive initial structures is formed by forming a first stack of transistors along a Z direction substantially perpendicular to a substrate plane, and forming local interconnect structures. Each of the transistors in the first stack of transistors is sandwiched between two of the local interconnect structures. Vertical conductive structures are formed substantially parallel to the Z direction, a height of one of the vertical conductive structures along the Z direction being at least a height of the initial structure. The initial structure is functionalized into a final structure by forming one or more connections each electrically coupling one of the local interconnect structures to one of the vertical conductive structures.Type: GrantFiled: September 28, 2022Date of Patent: June 18, 2024Assignee: Tokyo Electron LimitedInventors: Lars Liebmann, Jeffrey Smith, Anton deVilliers
-
Patent number: 11848236Abstract: Process flows and methods are provided for recessing a fill material within openings formed within a patterned substrate. The openings are formed within a multilayer stack comprising a target material layer and one or more additional material layers, which overly and differ from the target material layer. After the openings are formed within the multilayer stack, a grafting material comprising a solubility-shifting agent is selectively deposited within the openings, such that the grafting material adheres to the target material layer without adhering to the additional material layer(s) overlying the target material layer. Next, a fill material is deposited within the openings and the solubility-shifting agent is activated to change the solubility of a portion of the fill material adjacent to and surrounding the grafting material. Then, a wet development process is used to remove the soluble/insoluble portions of fill material to the recess the fill material within the openings.Type: GrantFiled: September 20, 2021Date of Patent: December 19, 2023Assignee: Tokyo Electron LimitedInventors: Anton deVilliers, Michael Murphy
-
Publication number: 20230367217Abstract: A method for patterning a substrate in which a patterned photoresist structure can be formed on the substrate, the patterned photoresist structure having a sidewall. A conformal layer of spacer material can be deposited on the sidewall. The patterned photoresist structure can then be removed from the substrate, leaving behind the spacer material. Then, the substrate can be directionally etched using the sidewall spacer as an etch mask to form the substrate having a target critical dimension.Type: ApplicationFiled: July 18, 2023Publication date: November 16, 2023Applicant: Tokyo Electron LimitedInventors: Jodi GRZESKOWIAK, Anthony SCHEPIS, Anton DEVILLIERS
-
Patent number: 11782346Abstract: A method for patterning a substrate in which a patterned photoresist structure can be formed on the substrate, the patterned photoresist structure having a sidewall. A conformal layer of spacer material can be deposited on the sidewall. The patterned photoresist structure can then be removed from the substrate, leaving behind the spacer material. Then, the substrate can be directionally etched using the sidewall spacer as an etch mask to form the substrate having a target critical dimension.Type: GrantFiled: September 25, 2020Date of Patent: October 10, 2023Assignee: Tokyo Electron LimitedInventors: Jodi Grzeskowiak, Anthony Schepis, Anton Devilliers
-
Patent number: 11776808Abstract: A method for planarizing a substrate includes: receiving a substrate having microfabricated structures that differ in height across the working surface of the substrate that define a non-planar topography, depositing a first layer that includes a solubility-shifting agent on the working surface of the substrate by spin-on deposition in a non-planar fashion, exposing the first layer to a first pattern of actinic radiation based on the topography, developing the first layer using a predetermined solvent, and depositing a second layer over the working surface of the substrate that has a greater planarity as compared to the first layer prior to developing the first layer. The first pattern of radiation changes a solubility of the first layer such that upper regions of the non-planar topography of the first layer are soluble to the predetermined solvent.Type: GrantFiled: December 15, 2020Date of Patent: October 3, 2023Assignee: TOKYO ELECTRON LIMITEDInventors: Anthony R. Schepis, Anton deVilliers
-
Patent number: 11764113Abstract: Techniques herein include methods for fabricating CFET devices. The methods enable high-temperature processes to be performed for FINFET and gate all around (GAA) technologies without degradation of temperature sensitive materials within the device and transistors. In particular, high temperature anneals and depositions can be performed prior to deposition of temperature-sensitive materials, such as work function metals and silicides. The methods enable at least two transistor devices to be fabricated in a stepwise manner while preventing thermal violations of any materials in either transistor.Type: GrantFiled: August 3, 2021Date of Patent: September 19, 2023Assignee: Tokyo Electron LimitedInventors: Jeffrey Smith, Daniel Chanemougame, Lars Liebmann, Paul Gutwin, Robert Clark, Anton Devilliers
-
Patent number: 11735525Abstract: A semiconductor device includes a first power rail, a first power input structure, a circuit and a first middle-of-line rail. The first power rail is formed in a first rail opening within a first isolation trench on a substrate. The first power input structure is configured to connect with a first terminal of a power source that is external of the semiconductor device to receive electrical power from the power source. The circuit is formed, on the substrate, by layers between the first power rail and the first power input structure. The first middle-of-line rail is formed by one or more of the layers that form the circuit. The first middle-of-line rail is configured to deliver the electrical power from the first power input structure to the first power rail, and the first power rail provides the electrical power to the circuit for operation.Type: GrantFiled: October 21, 2019Date of Patent: August 22, 2023Assignee: TOKYO ELECTRON LIMITEDInventors: Lars Liebmann, Jeffrey Smith, Anton Devilliers, Daniel Chanemougame
-
Patent number: 11721582Abstract: Techniques herein include methods for fabricating three-dimensional (3D) logic or memory stack integrated with 3D metal routing. The methods can include stacking metal layers within existing 3D silicon stacks. A first portion can be masked while a second, uncovered portion is etched. Predetermined layers in a bottom portion (disposed closer to the substrate) of the multilayer stack can be replaced with a conductor. The second portion can be masked while the first portion is uncovered and processed. This can enable higher density 3D circuits by having multiple metal lines contained within a multilayer 3D nano-sheet. Advantageously, this facilitates easier connections for 3D logic and memory. Moreover, better speed performance can be achieved by having reduced distance for signals to travel to transistor connections.Type: GrantFiled: December 21, 2021Date of Patent: August 8, 2023Assignee: Tokyo Electron LimitedInventors: Mark I. Gardner, H. Jim Fulford, Anton Devilliers
-
Publication number: 20230052800Abstract: A method of forming sub-resolution features that includes: exposing a photoresist layer formed over a substrate to a first ultraviolet light (UV) radiation having a first wavelength of 365 nm or longer through a mask configured to form features at a first critical dimension, the photoresist layer including first portions exposed to the first UV radiation and second portions unexposed to the first UV radiation after exposing with the first UV radiation; exposing the first portions and the second portions to a second UV radiation; and developing the photoresist layer after exposing the photoresist layer to the second UV radiation to form the sub-resolution features having a second critical dimension less than the first critical dimension.Type: ApplicationFiled: November 4, 2021Publication date: February 16, 2023Inventors: Daniel Fulford, Jodi Grzeskowiak, H. Jim Fulford, Sean Smith, Partha Mukhopadhyay, Michael Murphy, Anton deVilliers
-
Patent number: 11574845Abstract: A method of manufacturing a 3D semiconductor device, the method including forming a first target structure, the first target structure including at least one upper gate, at least one bottom gate, and a dielectric separation layer disposed between and separating the at least one upper gate and the at least one bottom gate; removing material in a plurality of material removal areas in the first target structure, the plurality of material removal areas including at least one material removal area that extends through the at least one upper gate to a top of the dielectric separation layer; and forming a first contact establishing a first electrical connection to the upper gate and a second contact establishing a second electrical connection to the at least one bottom gate, such that the first contact and second contact are independent of each other.Type: GrantFiled: April 14, 2020Date of Patent: February 7, 2023Assignee: TOKYO ELECTRON LIMITEDInventors: Daniel Chanemougame, Lars Liebmann, Jeffrey Smith, Anton deVilliers
-
Publication number: 20230036597Abstract: Aspects of the present disclosure provide a self-aligned microfabrication method, which can include providing a substrate having vertically arranged first and second channel structures, forming first and second sacrificial contacts to cover ends of the first and second channel structures, respectively, covering the first and second sacrificial contacts with a fill material, recessing the fill material such that the second sacrificial contact is at least partially uncovered while the first sacrificial contact remains covered, replacing the second sacrificial contact with a cover spacer, removing a remaining portion of the first fill material, uncovering the end of the first channel structure, forming a first source/drain (S/D) contact to cover the end of the first channel structure, covering the first S/D contact with a second fill material, uncovering the end of the second channel structure, and forming a second S/D contact at the end of the second channel structure.Type: ApplicationFiled: August 1, 2022Publication date: February 2, 2023Applicant: Tokyo Electron LimitedInventors: Jeffrey SMITH, Daniel CHANEMOUGAME, Lars LIEBMANN, Paul GUTWIN, Subhadeep KAL, Kandabara TAPILY, Anton DEVILLIERS
-
Publication number: 20230024975Abstract: A method for forming a semiconductor apparatus includes forming a plurality of repetitive initial structures over a substrate of the semiconductor apparatus. An initial structure in the plurality of repetitive initial structures is formed by forming a first stack of transistors along a Z direction substantially perpendicular to a substrate plane, and forming local interconnect structures. Each of the transistors in the first stack of transistors is sandwiched between two of the local interconnect structures. Vertical conductive structures are formed substantially parallel to the Z direction, a height of one of the vertical conductive structures along the Z direction being at least a height of the initial structure. The initial structure is functionalized into a final structure by forming one or more connections each electrically coupling one of the local interconnect structures to one of the vertical conductive structures.Type: ApplicationFiled: September 28, 2022Publication date: January 26, 2023Applicant: Tokyo Electron LimitedInventors: Lars Liebmann, Jeffrey Smith, Anton deVilliers
-
Publication number: 20220375921Abstract: An integrated circuit includes an array of unit cells, each unit cell of which including field effect transistors arranged in a stack. Local interconnect structures form select conductive paths between select terminals of the field effect transistors to define cell circuitry that is confined within each unit cell. An array of contacts is disposed on an accessible surface of the unit cell, where each contact is electrically coupled to a corresponding electrical node of the cell circuitry.Type: ApplicationFiled: August 3, 2022Publication date: November 24, 2022Applicant: Tokyo Electron LimitedInventors: Lars Liebmann, Jeffrey Smith, Daniel Chanemougame, Anton deVilliers
-
Patent number: 11495540Abstract: Aspects of the disclosure provide a semiconductor apparatus including a plurality of structures. A first one of the structures comprises a first stack of transistors that includes a first transistor formed on a substrate and a second transistor stacked on the first transistor along a Z direction substantially perpendicular to a substrate plane of the semiconductor apparatus. The first one of the structures further includes local interconnect structures. The first transistor is sandwiched between two of the local interconnect structures. The first one of the structures further includes vertical conductive structures substantially parallel to the Z direction. The vertical conductive structures are configured to provide at least power supplies for the first one of the structures by electrically coupling with the local interconnect structures. A height of one of the vertical conductive structures along the Z direction is at least a height of the first one of the structures.Type: GrantFiled: October 22, 2019Date of Patent: November 8, 2022Assignee: Tokyo Electron LimitedInventors: Lars Liebmann, Jeffrey Smith, Anton deVilliers