Patents by Inventor Antonio Caiafa

Antonio Caiafa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120155613
    Abstract: Methods and systems for active resonant voltage switching are provided. One active resonant switching system includes a voltage switching system having one or more active resonant modules to provide a switching voltage output. Each of the resonant modules includes a plurality of switching devices configured to operate in open and closed states to produce first and second voltage level outputs from a voltage input. The resonant modules also include a capacitor connected to the switching devices and configured to receive a discharge energy during a resonant operating cycle when switching an output voltage from the first voltage level to the second voltage level, wherein the capacitor is further configured to restore system energy when switching from the second to first voltage level. The resonant modules further include a resonant inductor configured to transfer energy to and from the capacitor.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 21, 2012
    Applicant: General Electric Company
    Inventors: Antonio Caiafa, Peter Michael Edic, Colin Richard Wilson
  • Publication number: 20120027164
    Abstract: An apparatus and method for an electron beam manipulation coil for an x-ray generation system includes the use of a control circuit. The control circuit includes a first low voltage source, a second low voltage source, and a first switching device coupled in series with the first low voltage source and configured to create a first current path with the first low voltage source when in a closed position. The control circuit also includes a second switching device coupled in series with the second low voltage source and configured to create a second current path with the second low voltage source when in a closed position and a capacitor coupled in parallel with an electron beam manipulation coil and positioned along the first and second current paths.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Inventors: Antonio Caiafa, Maja Harfman Todorovic, Joseph Leclaire Reynolds
  • Publication number: 20120027165
    Abstract: An apparatus and method for magnetic control of an electron beam includes a control circuit having a first low voltage source and a second low voltage source. The control circuit also includes a first switching device coupled in series with the first low voltage source and configured to create a first current path with the first low voltage source when in a closed position and a second switching device coupled in series with the second low voltage source and configured to create a second current path with the second low voltage source when in a closed position. The control circuit further includes a capacitor coupled in parallel with an electron beam manipulation coil and positioned along the first and second current paths and a current source circuit electrically coupled to the electron beam manipulation coil and constructed to generate an offset current in the first and second current paths.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Inventors: Antonio Caiafa, Maja Harfman Todorovic, Joseph Leclaire Reynolds
  • Publication number: 20110241575
    Abstract: A system and method for controlling the temperature of both an electron emitter and a filament to their lowest possible operating temperature is disclosed. The apparatus includes a filament, an electron emitter heated by the filament to generate an electron beam, and a power supply configured to supply power to each of the filament and the electron emitter. The apparatus also includes a control system to control a supply of power to each of the filament and the electron emitter, with the control system being configured to receive an input indicative of a desired electron emitter operating temperature, cause a desired voltage to be applied between the electron emitter and the filament, and cause a desired voltage to be applied to the filament based on the desired emitter element operating temperature, so as to minimize an operating temperature of the electron emitter and the filament.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Inventors: Antonio Caiafa, Xi Zhang, Vance Robinson, Sergio Lemaitre
  • Patent number: 7915944
    Abstract: One embodiment is a gate drive circuitry for switching a semiconductor device having a non-isolated input, the gate drive circuitry having a first circuitry configured to turn-on the semiconductor device by imposing a current on a gate of the semiconductor device so as to forward bias an inherent parasitic diode of the semiconductor device. There is a second circuitry configured to turn-off the semiconductor device by imposing a current on the gate of the semiconductor device so as to reverse bias the parasitic diode of the semiconductor device wherein the first circuitry and the second circuitry are coupled to the semiconductor device respectively through a first switch and a second switch.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: March 29, 2011
    Assignee: General Electric Company
    Inventors: Antonio Caiafa, Jeffrey Joseph Nasadoski, John Stanley Glaser, Juan Antonio Sabate, Richard Alfred Beaupre
  • Patent number: 7844030
    Abstract: A system includes a generator configured to output at least one voltage level and an x-ray source configured to generate x-rays directed toward an object. The system includes a module coupled to the output of the generator and to an input of the x-ray source and configured to switch or assist in switching an output to the x-ray source between a first voltage level and a second voltage level.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: November 30, 2010
    Assignee: General Electric Company
    Inventors: Colin R. Wilson, Antonio Caiafa, John Charles Hill, Samit Kumar Basu, Pierfrancesco Landolfi, Peter Michael Edic
  • Patent number: 7826594
    Abstract: A system and method for addressing individual electron emitters in an emitter array is disclosed. The system includes an emitter array comprising a plurality of emitter elements arranged in a non-rectangular layout and configured to generate at least one electron beam and a plurality of extraction grids positioned adjacent to the emitter array, each extraction grid being associated with at least one emitter element to extract the at least one electron beam therefrom. The field emitter array system also includes a plurality of voltage control channels connected to the plurality of emitter elements and the plurality of extraction grids such that each of the emitter elements and each of the extraction grids is individually addressable. In the field emitter array system, the number of voltage control channels is equal to the sum of a pair of integers closest in value whose product equals the number of emitter elements.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: November 2, 2010
    Assignee: General Electric Company
    Inventors: Yun Zou, Mark E. Vermilyea, Louis Paul Inzinna, Antonio Caiafa
  • Publication number: 20100271081
    Abstract: One embodiment is a gate drive circuitry for switching a semiconductor device having a non-isolated input, the gate drive circuitry having a first circuitry configured to turn-on the semiconductor device by imposing a current on a gate of the semiconductor device so as to forward bias an inherent parasitic diode of the semiconductor device. There is a second circuitry configured to turn-off the semiconductor device by imposing a current on the gate of the semiconductor device so as to reverse bias the parasitic diode of the semiconductor device wherein the first circuitry and the second circuitry are coupled to the semiconductor device respectively through a first switch and a second switch.
    Type: Application
    Filed: June 30, 2009
    Publication date: October 28, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Antonio Caiafa, Jeffrey Joseph Nasadoski, John Stanley Glaser, Juan Antonio Sabate, Richard Alfred Beaupre
  • Patent number: 7809114
    Abstract: A multiple spot x-ray generator is provided that includes a plurality of electron generators. Each electron generator includes an emitter element to emit an electron beam, a meshed grid adjacent each emitter element to enhance an electric field at a surface of the emitter element, and a focusing element positioned to receive the electron beam from each of the emitter elements and focus the electron beam to form a focal spot on a shielded target anode, the shielded target anode structure producing an array of x-ray focal spots when impinged by electron beams generated by the plurality of electron generators. The plurality of electron generators are arranged to form an electron generator matrix that includes activation connections electrically connected to the plurality of electron generators, wherein each electron generator is connected to a pair of the activation connections to receive an electric potential therefrom.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: October 5, 2010
    Assignee: General Electric Company
    Inventors: Yun Zou, Mark E. Vermilyea, Louis Paul Inzinna, Vasile Bogdan Neculaes, John Scott Price, Yang Cao, Antonio Caiafa
  • Patent number: 7742573
    Abstract: A system is provided, which includes a rotatable gantry for receiving an object to be scanned. The system includes an x-ray source for projecting x-rays of two different energy levels towards the object and also a power supply, which energizes the x-ray source to two different voltage levels at a predetermined rate for generating x-rays at two different energy levels. The power supply in the system includes a fixed voltage source to input a voltage to a switching module with number of identical switching stages. Each stage in the switching module consists of a first switch, which charges a capacitor in a conducting state and output a first voltage, a second switch, which connects the fixed voltage source and the capacitor in series to output a second voltage in a conducting state and a diode which blocks a reverse current from the capacitor to the power supply.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: June 22, 2010
    Assignee: General Electric Company
    Inventors: Antonio Caiafa, Colin Richard Wilson
  • Publication number: 20100098217
    Abstract: A system is provided, which includes a rotatable gantry for receiving an object to be scanned. The system includes an x-ray source for projecting x-rays of two different energy levels towards the object and also a power supply, which energizes the x-ray source to two different voltage levels at a predetermined rate for generating x-rays at two different energy levels. The power supply in the system includes a fixed voltage source to input a voltage to a switching module with number of identical switching stages. Each stage in the switching module consists of a first switch, which charges a capacitor in a conducting state and output a first voltage, a second switch, which connects the fixed voltage source and the capacitor in series to output a second voltage in a conducting state and a diode which blocks a reverse current from the capacitor to the power supply.
    Type: Application
    Filed: October 17, 2008
    Publication date: April 22, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Antonio Caiafa, Colin Richard Wilson
  • Publication number: 20090245467
    Abstract: A system includes a generator configured to output at least one voltage level and an x-ray source configured to generate x-rays directed toward an object. The system includes a module coupled to the output of the generator and to an input of the x-ray source and configured to switch or assist in switching an output to the x-ray source between a first voltage level and a second voltage level.
    Type: Application
    Filed: November 4, 2008
    Publication date: October 1, 2009
    Inventors: Colin R. Wilson, Antonio Caiafa, John Charles Hill, Samit Kumar Basu, Pierfrancesco Landolfi, Peter Michael Edic
  • Publication number: 20090185661
    Abstract: A system and method for addressing individual electron emitters in an emitter array is disclosed. The system includes an emitter array comprising a plurality of emitter elements arranged in a non-rectangular layout and configured to generate at least one electron beam and a plurality of extraction grids positioned adjacent to the emitter array, each extraction grid being associated with at least one emitter element to extract the at least one electron beam therefrom. The field emitter array system also includes a plurality of voltage control channels connected to the plurality of emitter elements and the plurality of extraction grids such that each of the emitter elements and each of the extraction grids is individually addressable. In the field emitter array system, the number of voltage control channels is equal to the sum of a pair of integers closest in value whose product equals the number of emitter elements.
    Type: Application
    Filed: May 1, 2008
    Publication date: July 23, 2009
    Inventors: Yun Zou, Mark E. Vermilyea, Louis Paul Inzinna, Antonio Caiafa
  • Publication number: 20090185660
    Abstract: A multiple spot x-ray generator is provided that includes a plurality of electron generators. Each electron generator includes an emitter element to emit an electron beam, a meshed grid adjacent each emitter element to enhance an electric field at a surface of the emitter element, and a focusing element positioned to receive the electron beam from each of the emitter elements and focus the electron beam to form a focal spot on a shielded target anode, the shielded target anode structure producing an array of x-ray focal spots when impinged by electron beams generated by the plurality of electron generators. The plurality of electron generators are arranged to form an electron generator matrix that includes activation connections electrically connected to the plurality of electron generators, wherein each electron generator is connected to a pair of the activation connections to receive an electric potential therefrom.
    Type: Application
    Filed: January 21, 2008
    Publication date: July 23, 2009
    Inventors: Yun Zou, Mark E. Vermilyea, Louis Paul Inzinna, Vasile Bogdan Neculaes, John Scott Price, Yang Cao, Antonio Caiafa
  • Publication number: 20090041198
    Abstract: Systems and methods for highly collimated and temporally variable X-ray beams. Disclosed herein is a system for producing a collimated X-ray beam, the system including one or more distributed electron sources configured to produce electron beams, one or more X-ray production targets configured to receive the electron beams and to generate X-ray beams at X-ray focal spots, X-ray optics configured to collect the X-ray beams from the X-ray focal spots, wherein the X-rays optics are configured to focus the X-ray beams to a single virtual focal spot, and an X-ray collimator configured to collimate the X-ray beams from the virtual focal spot to generate the collimated X-ray beam.
    Type: Application
    Filed: July 17, 2008
    Publication date: February 12, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Scott Price, Vanita Mani, Antonio Caiafa, Kristopher John Frutschy, Susanne Madeline Lee, Vasile Bogden Neculaes, Fred Sharifi, Yun Zou
  • Patent number: 7439682
    Abstract: A circuit for driving the current for inductive loads such as a electron beam deflection coil for an x-ray generator system. The circuit includes two selectable voltage levels which are provided by a high level voltage source and a low level voltage source or, alternatively, by a low level voltage source and a boosting converter. A plurality of switches for selecting the voltage source allow only one voltage source to be connected to the load at any given time, and for selecting the polarity of the current through the coil. The high level voltage source is selected when the load is charging or discharging. The low level voltage source is selected when the load is operating in a constant current mode, where a high frequency switching device uses the low level voltage source to generate a pulse width modulation waveform according to a reference current duty cycle to control the voltage across the load.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: October 21, 2008
    Assignee: GE Homeland Protection, Inc.
    Inventors: Antonio Caiafa, Juan Antonio Sabate
  • Patent number: 7327092
    Abstract: A circuit for driving the current for inductive loads such as an electron beam deflection coil for an x-ray generator system. The circuit includes two selectable voltage levels provided by a high level and a low level source. A plurality of switches selects the voltage level and determines the polarity of the current through the coil. The high level source is selected when the load is charging or discharging. The low level source is selected when the load is operating in a constant current mode, where a high frequency switching device controls the voltage through the load by switching the low level source to generate a PWM waveform according to a reference current duty cycle. A feedback loop monitors the current through the load to adjust the duty cycle of the PWM waveform to more accurately control the current through the load.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: February 5, 2008
    Assignee: GE Homeland Protection, Inc.
    Inventors: Antonio Caiafa, Juan Antonio Sabate
  • Publication number: 20080007306
    Abstract: A circuit for driving the current for inductive loads such as a electron beam deflection coil for an x-ray generator system. The circuit includes two selectable voltage levels which are provided by a high level voltage source and a low level voltage source or, alternatively, by a low level voltage source and a boosting converter. A plurality of switches for selecting the voltage source allow only one voltage source to be connected to the load at any given time, and for selecting the polarity of the current through the coil. The high level voltage source is selected when the load is charging or discharging. The low level voltage source is selected when the load is operating in a constant current mode, where a high frequency switching device uses the low level voltage source to generate a pulse width modulation waveform according to a reference current duty cycle to control the voltage across the load.
    Type: Application
    Filed: August 23, 2007
    Publication date: January 10, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Antonio Caiafa, Juan Sabate
  • Publication number: 20070120498
    Abstract: A circuit for driving the current for inductive loads such as an electron beam deflection coil for an x-ray generator system. The circuit includes two selectable voltage levels provided by a high level and a low level source. A plurality of switches selects the voltage level and determines the polarity of the current through the coil. The high level source is selected when the load is charging or discharging. The low level source is selected when the load is operating in a constant current mode, where a high frequency switching device controls the voltage through the load by switching the low level source to generate a PWM waveform according to a reference current duty cycle. A feedback loop monitors the current through the load to adjust the duty cycle of the PWM waveform to more accurately control the current through the load.
    Type: Application
    Filed: November 30, 2005
    Publication date: May 31, 2007
    Inventors: Antonio Caiafa, Juan Sabate