Patents by Inventor April Schricker

April Schricker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11563141
    Abstract: A method includes mounting a ceramic phosphor on an acrylic-free and metal-containing catalyst-free tacky layer of a dicing tape, dicing the ceramic phosphor from the dicing tape into ceramic phosphor plates, removing the ceramic phosphor plates from the dicing tape, and attaching the ceramic phosphor plates on light-emitting device (LED) dies.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: January 24, 2023
    Assignee: Lumileds LLC
    Inventors: April Schricker, Niek Van Leth, Daniel Roitman
  • Publication number: 20200350462
    Abstract: A method includes mounting a ceramic phosphor on an acrylic-free and metal-containing catalyst-free tacky layer of a dicing tape, dicing the ceramic phosphor from the dicing tape into ceramic phosphor plates, removing the ceramic phosphor plates from the dicing tape, and attaching the ceramic phosphor plates on light-emitting device (LED) dies.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Applicant: LUMILEDS LLC
    Inventors: April SCHRICKER, Niek VAN LETH, Daniel ROITMAN
  • Patent number: 10790417
    Abstract: In embodiments of the invention, a light emitting device includes a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region. A first wavelength converting layer is disposed in a path of light emitted by the light emitting layer. The first wavelength converting layer may be a wavelength converting ceramic. A second wavelength converting layer is fused to the first wavelength converting layer. The second wavelength converting layer may be a wavelength converting material disposed in glass.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: September 29, 2020
    Assignee: Lumileds LLC
    Inventors: April Schricker, Oleg Borisovich Shchekin, Han Choi, Peter Josef Schmidt
  • Patent number: 10734543
    Abstract: A method includes mounting a ceramic phosphor (102) on an acrylic-free and metal-containing catalyst-free tacky layer (108) of a dicing tape (104), dicing the ceramic phosphor (102) from the dicing tape (104) into ceramic phosphor plates (11)2, removing the ceramic phosphor plates (112) from the dicing tape (104), and attaching the ceramic phosphor plates (112) on light-emitting device (LED) dies.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: August 4, 2020
    Assignee: Lumileds LLC
    Inventors: April Schricker, Niek Van Leth, Daniel Roitman
  • Publication number: 20190252580
    Abstract: In embodiments of the invention, a light emitting device includes a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region. A first wavelength converting layer is disposed in a path of light emitted by the light emitting layer. The first wavelength converting layer may be a wavelength converting ceramic. A second wavelength converting layer is fused to the first wavelength converting layer. The second wavelength converting layer may be a wavelength converting material disposed in glass.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: April SCHRICKER, Oleg Borisovich SHCHEKIN, Han CHOI, Peter Josef SCHMIDT
  • Publication number: 20190172983
    Abstract: A ceramic green wavelength conversion element (120) is coated with a red wavelength conversion material (330) and placed above a blue light emitting element (110) such that the ceramic element (120) is attached to the light emitting element (110), thereby providing an efficient thermal coupling from the red and green converters (330, 120) to the light emitting element (110) and its associated heat sink. To protect the red converter coating (330) from the effects of subsequent processes, a sacrificial clear coating (340) is created above the red converter element (330). This clear coating (340) may be provided as a discrete layer of clear material, or it may be produced by allowing the red converters to settle to the bottom of its suspension material, thereby forming a converter-free upper layer that can be subjected to the subsequent fabrication processes.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 6, 2019
    Applicant: Lumileds LLC
    Inventors: April Schricker, Kim Mai, Grigoriy Basin, Uwe Mackens, Joost Vogels, Aldegonda Weijers, Karl Zijtveld
  • Publication number: 20180053877
    Abstract: A method includes mounting a ceramic phosphor (102) on an acrylic-free and metal-containing catalyst-free tacky layer (108) of a dicing tape (104), dicing the ceramic phosphor (102) from the dicing tape (104) into ceramic phosphor plates (11)2, removing the ceramic phosphor plates (112) from the dicing tape (104), and attaching the ceramic phosphor plates (112) on light-emitting device (LED) dies.
    Type: Application
    Filed: March 4, 2016
    Publication date: February 22, 2018
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: April SCHRICKER, Niek VAN LETH, Daniel ROITMAN
  • Patent number: 9178149
    Abstract: This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: November 3, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Michael Miller, Tony P. Chiang, Xiying Costa, Tanmay Kumar, Prashant B Phatak, April Schricker
  • Patent number: 8913417
    Abstract: A memory cell is provided that includes a steering element, a reversible resistance-switching element coupled to the steering element and a silicide-forming metal layer disposed between the steering element and the reversible resistance-switching element. The reversible resistance-switching element includes tantalum, and is formed using a selective deposition process. Numerous other aspects are provided.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: December 16, 2014
    Assignee: SanDisk 3D LLC
    Inventors: April Schricker, Brad Herner, Michael W. Konevecki
  • Publication number: 20140322887
    Abstract: This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
    Type: Application
    Filed: July 7, 2014
    Publication date: October 30, 2014
    Inventors: Michael Miller, Tony P. Chiang, Xiying Costa, Tanmay Kumar, Prashant B. Phatak, April Schricker
  • Patent number: 8872151
    Abstract: This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: October 28, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Michael Miller, Tony P. Chiang, Xiying Costa, Tanmay Kumar, Prashant B Phatak, April Schricker
  • Patent number: 8637845
    Abstract: Optimized electrodes for ReRAM memory cells and methods for forming the same are discloses. One aspect comprises forming a first electrode, forming a state change element in contact with the first electrode, treating the state change element, and forming a second electrode. Treating the state change element increases the barrier height at the interface between the second electrode and the state change element. Another aspect comprises forming a first electrode in a manner to deliberately establish a certain degree of amorphization in the first electrode, forming a state change element in contact with the first electrode. The degree of amorphization of the first electrode is either at least as great as the degree of amorphization of the state change element or no more than 5 percent less than the degree of amorphization of the state change element.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: January 28, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Deepak C. Sekar, April Schricker, Xiying Chen, Klaus Schuegraf
  • Publication number: 20140001430
    Abstract: This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
    Type: Application
    Filed: May 17, 2013
    Publication date: January 2, 2014
    Applicant: Intermolecular Inc.
    Inventors: Michael Miller, Tony P. Chiang, Xiying Costa, Tanmay Kumar, Prashant B. Phatak, April Schricker
  • Patent number: 8558220
    Abstract: In some aspects, a method of fabricating a memory cell is provided that includes (1) fabricating a first conductor above a substrate; (2) selectively fabricating a carbon nano-tube (CNT) material above the first conductor; (3) fabricating a diode above the CNT material; and (4) fabricating a second conductor above the diode. Numerous other aspects are provided.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: October 15, 2013
    Assignee: SanDisk 3D LLC
    Inventors: April Schricker, Mark Clark, Brad Herner
  • Patent number: 8465996
    Abstract: This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: June 18, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Michael Miller, Prashant Phatak, Tony Chiang, Xiyang Chen, April Schricker, Tanmay Kumar
  • Publication number: 20120315725
    Abstract: This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 13, 2012
    Applicant: Intermolecular, Inc.
    Inventors: Michael Miller, Prashant Phatak, Tony Chiang, Xiyang Chen, April Schricker, Tanmay Kumar
  • Publication number: 20120286233
    Abstract: A memory cell is provided that includes a steering element, a reversible resistance-switching element coupled to the steering element and a silicide-forming metal layer disposed between the steering element and the reversible resistance-switching element. The reversible resistance-switching element includes tantalum, and is formed using a selective deposition process. Numerous other aspects are provided.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 15, 2012
    Inventors: April Schricker, Brad Herner, Michael W. Konevecki
  • Publication number: 20120280201
    Abstract: Optimized electrodes for ReRAM memory cells and methods for forming the same are discloses. One aspect comprises forming a first electrode, forming a state change element in contact with the first electrode, treating the state change element, and forming a second electrode. Treating the state change element increases the barrier height at the interface between the second electrode and the state change element. Another aspect comprises forming a first electrode in a manner to deliberately establish a certain degree of amorphization in the first electrode, forming a state change element in contact with the first electrode. The degree of amorphization of the first electrode is either at least as great as the degree of amorphization of the state change element or no more than 5 percent less than the degree of amorphization of the state change element.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Inventors: Deepak C. Sekar, April Schricker, Xiying Chen, Klaus Schuegraf
  • Patent number: 8304754
    Abstract: Rewritable switching materials and methods for forming the same are described herein. One embodiment is a storage device comprising a first electrode, a state change element in contact with the first electrode, the state change element comprises ZrxYyOz, and a second electrode in contact with the state change element. A method for forming such a storage device is also disclosed herein. Another embodiment is a storage device comprising a first electrode a state change element in contact with the first electrode, the state change comprises at least one of cerium oxide or bismuth oxide, and a second electrode in contact with the state change element. A method for forming such a storage device is also disclosed herein.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: November 6, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Depak C. Sekar, April Schricker
  • Patent number: 8274066
    Abstract: This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: September 25, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Michael Miller, Prashant Phatak, Tony Chiang, Xiyang Chen, April Schricker, Tanmay Kumar