Patents by Inventor April Schricker

April Schricker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8263420
    Abstract: Optimized electrodes for ReRAM memory cells and methods for forming the same are discloses. One aspect comprises forming a first electrode, forming a state change element in contact with the first electrode, treating the state change element, and forming a second electrode. Treating the state change element increases the barrier height at the interface between the second electrode and the state change element. Another aspect comprises forming a first electrode in a manner to deliberately establish a certain degree of amorphization in the first electrode, forming a state change element in contact with the first electrode. The degree of amorphization of the first electrode is either at least as great as the degree of amorphization of the state change element or no more than 5 percent less than the degree of amorphization of the state change element.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: September 11, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Depak C. Sekar, April Schricker, Xiying Chen, Klaus Schuegraf, Raghuveer Makala
  • Publication number: 20120217462
    Abstract: A method of forming a memory cell is provided that includes forming a steering element above a substrate, and forming a reversible resistance-switching element coupled to the steering element. The reversible resistance-switching element includes one or more of TiOx, Ta2O5, Nb2O5, Al2O3, HfO2, and V2O5, and the reversible resistance switching element is formed without being etched. Numerous other aspects are provided.
    Type: Application
    Filed: May 4, 2012
    Publication date: August 30, 2012
    Inventors: April Schricker, Brad Herner, Mark Clark
  • Patent number: 8236623
    Abstract: In some aspects, a method of fabricating a memory cell is provided that includes (1) fabricating a steering element above a substrate; and (2) fabricating a reversible-resistance switching element coupled to the steering element by selectively fabricating carbon nano-tube (CNT) material above the substrate. Numerous other aspects are provided.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: August 7, 2012
    Assignee: SanDisk 3D LLC
    Inventors: April Schricker, Mark Clark, Brad Herner
  • Patent number: 8233308
    Abstract: In some aspects, a method of forming a memory cell is provided that includes (1) forming a first conductor above a substrate; (2) forming a diode above the first conductor; (3) forming a reversible resistance-switching element above the first conductor using a selective deposition process; and (4) forming a second conductor above the diode and the reversible resistance-switching element. Numerous other aspects are provided.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: July 31, 2012
    Assignee: SanDisk 3D LLC
    Inventors: April Schricker, Brad Herner, Michael W. Konevecki
  • Publication number: 20120032133
    Abstract: This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
    Type: Application
    Filed: October 4, 2011
    Publication date: February 9, 2012
    Applicant: INTERMOLECULAR, INC.
    Inventors: Michael Miller, Prashant Phatak, Tony Chiang, Xiying Chen, April Schricker, Tanmay Kumar
  • Patent number: 8062918
    Abstract: This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: November 22, 2011
    Assignee: Intermolecular, Inc.
    Inventors: Michael Miller, Prashant Phatak, Tony Chiang, Xiying Chen, April Schricker, Tanmay Kumar
  • Publication number: 20110147693
    Abstract: In some aspects, a memory cell is provided that includes (1) a steering element above a substrate; and (2) a reversible resistance-switching element coupled to the steering element, wherein the reversible resistance-switching element is selectively formed by: (a) forming a material layer on the substrate; (b) etching the material layer; and (c) oxidizing the etched material layer to form a reversible resistance-switching material. Numerous other aspects are provided.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 23, 2011
    Inventors: APRIL SCHRICKER, BRAD HERNER, MARK CLARK
  • Patent number: 7902537
    Abstract: In some aspects, a method of forming a memory cell is provided that includes (1) forming a first conductor above a substrate; (2) forming a reversible resistance-switching element above the first conductor using a selective growth process; (3) forming a diode above the first conductor; and (4) forming a second conductor above the diode and the reversible resistance-switching element. Numerous other aspects are provided.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 8, 2011
    Assignee: Sandisk 3D LLC
    Inventors: April Schricker, Brad Herner, Mark Clark
  • Publication number: 20110042639
    Abstract: In some aspects, a method of forming a memory cell is provided that includes (1) forming a steering element above a substrate; and (2) selectively forming a reversible resistance-switching element coupled to the steering element by: (a) forming a material layer on the substrate; (b) etching the material layer; and (c) oxidizing the etched material layer to form a reversible resistance-switching material. Numerous other aspects are provided.
    Type: Application
    Filed: October 29, 2010
    Publication date: February 24, 2011
    Inventors: April Schricker, Brad Herner, Mark Clark
  • Patent number: 7846785
    Abstract: In some aspects, a method of forming a memory cell is provided that includes (1) forming a first conductor above a substrate; (2) forming a diode above the first conductor; (3) forming a reversible resistance-switching element above the first conductor using a selective deposition process; and (4) forming a second conductor above the diode and the reversible resistance-switching element. Numerous other aspects are provided.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: December 7, 2010
    Assignee: SanDisk 3D LLC
    Inventors: April Schricker, Brad Herner, Michael W. Konevecki
  • Patent number: 7824956
    Abstract: In some aspects, a method of forming a memory cell is provided that includes (1) forming a first conductor above a substrate; (2) forming a reversible resistance-switching element above the first conductor using a selective growth process; (3) forming a diode above the first conductor; and (4) forming a second conductor above the diode and the reversible resistance-switching element. Numerous other aspects are provided.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: November 2, 2010
    Assignee: SanDisk 3D LLC
    Inventors: April Schricker, Brad Herner, Mark Clark
  • Publication number: 20100117053
    Abstract: Rewritable switching materials and methods for forming the same are described herein. One embodiment is a storage device comprising a first electrode, a state change element in contact with the first electrode, the state change element comprises ZrxYyOz, and a second electrode in contact with the state change element. A method for forming such a storage device is also disclosed herein. Another embodiment is a storage device comprising a first electrode a state change element in contact with the first electrode, the state change comprises at least one of cerium oxide or bismuth oxide, and a second electrode in contact with the state change element. A method for forming such a storage device is also disclosed herein.
    Type: Application
    Filed: February 3, 2009
    Publication date: May 13, 2010
    Inventors: Deepak C. Sekar, April Schricker
  • Publication number: 20100117069
    Abstract: Optimized electrodes for ReRAM memory cells and methods for forming the same are discloses. One aspect comprises forming a first electrode, forming a state change element in contact with the first electrode, treating the state change element, and forming a second electrode. Treating the state change element increases the barrier height at the interface between the second electrode and the state change element. Another aspect comprises forming a first electrode in a manner to deliberately establish a certain degree of amorphization in the first electrode, forming a state change element in contact with the first electrode. The degree of amorphization of the first electrode is either at least as great as the degree of amorphization of the state change element or no more than 5 percent less than the degree of amorphization of the state change element.
    Type: Application
    Filed: February 3, 2009
    Publication date: May 13, 2010
    Inventors: Depak C. Sekar, April Schricker, Xiying Chen, Klaus Schuegraf, Raghuveer S. Makala
  • Publication number: 20090272961
    Abstract: This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
    Type: Application
    Filed: December 29, 2008
    Publication date: November 5, 2009
    Inventors: Michael Miller, Prashant Phatak, Tony Chiang, Xiying Chen, April Schricker, Tanmay Kumar
  • Publication number: 20090166609
    Abstract: In some aspects, a method of fabricating a memory cell is provided that includes (1) fabricating a first conductor above a substrate; (2) selectively fabricating a carbon nano-tube (CNT) material above the first conductor; (3) fabricating a diode above the CNT material; and (4) fabricating a second conductor above the diode. Numerous other aspects are provided.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: April Schricker, Mark Clark, Brad Herner
  • Publication number: 20090168491
    Abstract: In some aspects, a method of fabricating a memory cell is provided that includes (1) fabricating a steering element above a substrate; and (2) fabricating a reversible-resistance switching element coupled to the steering element by selectively fabricating carbon nano-tube (CNT) material above the substrate. Numerous other aspects are provided.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: April Schricker, Mark Clark, Brad Herner
  • Publication number: 20090166610
    Abstract: In some aspects, a method of fabricating a memory cell is provided that includes (1) fabricating a first conductor above a substrate; (2) fabricating a carbon nano-tube (CNT) material above the first conductor; (3) depositing a dielectric material onto a top surface of the CNT material; (4) planarizing the dielectric material to expose at least a portion of the CNT material; (5) fabricating a diode above the first conductor; and (6) fabricating a second conductor above the CNT material and the diode. Numerous other aspects are provided.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: April Schricker, Mark Clark, Brad Herner, Yoichiro Tanaka
  • Publication number: 20090001344
    Abstract: In some aspects, a method of forming a memory cell is provided that includes (1) forming a first conductor above a substrate; (2) forming a reversible resistance-switching element above the first conductor using a selective growth process; (3) forming a diode above the first conductor; and (4) forming a second conductor above the diode and the reversible resistance-switching element. Numerous other aspects are provided.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Inventors: April Schricker, Brad Herner, Mark Clark
  • Publication number: 20090001343
    Abstract: In some aspects, a method of forming a memory cell is provided that includes (1) forming a first conductor above a substrate; (2) forming a diode above the first conductor; (3) forming a reversible resistance-switching element above the first conductor using a selective deposition process; and (4) forming a second conductor above the diode and the reversible resistance-switching element. Numerous other aspects are provided.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Inventors: April Schricker, Brad Herner, Michael W. Konevecki
  • Publication number: 20090001342
    Abstract: In some aspects, a method of forming a memory cell is provided that includes (1) forming a first conductor above a substrate; (2) forming a reversible resistance-switching element above the first conductor using a selective growth process; (3) forming a diode above the first conductor; and (4) forming a second conductor above the diode and the reversible resistance-switching element. Numerous other aspects are provided.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Inventors: APRIL SCHRICKER, Brad Herner, Mark Clark