Patents by Inventor Aravind Kumar Padyana
Aravind Kumar Padyana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240372512Abstract: Multi-mode broadband low noise amplifiers (LNAs) are disclosed herein. In certain embodiments, an LNA includes a first amplification stage and a second amplification stage having a lower gain than the first amplification stage. The LNA is operable in a plurality of operating modes including a first mode in which the first amplification stage and the second amplification stage operate in a cascade to amplify a radio frequency (RF) receive signal, and a second mode in which the first amplification stage amplifies the RF receive signal and the second amplification stage is bypassed.Type: ApplicationFiled: July 12, 2024Publication date: November 7, 2024Inventors: Aravind Kumar Padyana, Rimal Deep Singh, Junhyung Lee, Bipul Agarwal
-
Patent number: 12074573Abstract: Multi-mode broadband low noise amplifiers (LNAs) are disclosed herein. In certain embodiments, an LNA includes a first amplification stage and a second amplification stage having a lower gain than the first amplification stage. The LNA is operable in a plurality of operating modes including a first mode in which the first amplification stage and the second amplification stage operate in a cascade to amplify a radio frequency (RF) receive signal, and a second mode in which the first amplification stage amplifies the RF receive signal and the second amplification stage is bypassed.Type: GrantFiled: October 6, 2023Date of Patent: August 27, 2024Assignee: Skyworks Solutions, Inc.Inventors: Aravind Kumar Padyana, Rimal Deep Singh, Junhyung Lee, Bipul Agarwal
-
Patent number: 12021495Abstract: Disclosed herein are signal amplifiers that include a plurality of switchable amplifier architectures so that particular gain modes can use dedicated amplifier architectures to provide desired characteristics for those gain modes, such as low noise figure or high linearity. The disclosed signal amplifier architectures provide tailored impedances using a degeneration block or matrix without using switches in the degeneration switching block. The disclosed signal amplifier architectures provide a plurality of gain modes where different gain modes use different paths through the amplifier architecture. Switches that are used to select the path through the amplifier architecture also provide targeted impedances in a degeneration block or matrix. The switches that select the gain path are provided in the amplifier architecture and are thus not needed or used in the degeneration block, thereby reducing the size of the package for the amplifier architecture.Type: GrantFiled: December 30, 2021Date of Patent: June 25, 2024Assignee: SKYWORKS SOLUTIONS, INC.Inventors: Junhyung Lee, Johannes Jacobus Emile Maria Hageraats, Yan Yan, Bumkyum Kim, Aravind Kumar Padyana, Joshua Haeseok Cho, Rimal Deep Singh, Bipul Agarwal
-
Publication number: 20240097623Abstract: Multi-mode broadband low noise amplifiers (LNAs) are disclosed herein. In certain embodiments, an LNA includes a first amplification stage and a second amplification stage having a lower gain than the first amplification stage. The LNA is operable in a plurality of operating modes including a first mode in which the first amplification stage and the second amplification stage operate in a cascade to amplify a radio frequency (RF) receive signal, and a second mode in which the first amplification stage amplifies the RF receive signal and the second amplification stage is bypassed.Type: ApplicationFiled: October 6, 2023Publication date: March 21, 2024Inventors: Aravind Kumar Padyana, Rimal Deep Singh, Junhyung Lee, Bipul Agarwal
-
Patent number: 11817829Abstract: Multi-mode broadband low noise amplifiers (LNAs) are disclosed herein. In certain embodiments, an LNA includes a first amplification stage and a second amplification stage having a lower gain than the first amplification stage. The LNA is operable in a plurality of operating modes including a first mode in which the first amplification stage and the second amplification stage operate in a cascade to amplify a radio frequency (RF) receive signal, and a second mode in which the first amplification stage amplifies the RF receive signal and the second amplification stage is bypassed.Type: GrantFiled: October 28, 2021Date of Patent: November 14, 2023Assignee: Skyworks Solutions, Inc.Inventors: Aravind Kumar Padyana, Rimal Deep Singh, Junhyung Lee, Bipul Agarwal
-
Patent number: 11563460Abstract: Described herein are methods for amplifying radio-frequency signals using a variable-gain amplifier with a plurality of input nodes. The methods provide a plurality of gain modes with a low gain mode or bypass mode that follows a bypass path through the variable-gain amplifier and a plurality of higher gain modes that take advantage of tailored impedances for particular gain modes. The tailored impedances can be configured to improve linearity of the amplification process in targeted gain modes. The methods can selectively couple the bypass path to a reference potential node in the plurality of higher gain modes and can selectively decouple the input nodes from a degeneration switching block in the bypass mode.Type: GrantFiled: October 13, 2020Date of Patent: January 24, 2023Assignee: SKYWORKS SOLUTIONS, INC.Inventors: Johannes Jacobus Emile Maria Hageraats, Junhyung Lee, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
-
Patent number: 11527997Abstract: Disclosed herein are signal amplifiers having a plurality of amplifier cores. Individual amplifier cores can be designed to enhance particular advantages while reducing other disadvantages. The signal amplifier can then switch between amplifier cores in a particular gain mode to achieve desired performance characteristics (e.g., improving noise figure or linearity). Examples of signal amplifiers disclosed herein include amplifier architectures with a low noise figure amplifier core that reduces the noise figure and a linearity boost amplifier core that increases linearity. The disclosed signal amplifiers can switch between a first active core and a second active core for a single or particular gain mode to achieve desired signal characteristics during different time periods.Type: GrantFiled: September 15, 2020Date of Patent: December 13, 2022Assignee: SKYWORKS SOLUTIONS, INC.Inventors: Junhyung Lee, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
-
Publication number: 20220255520Abstract: Disclosed herein are signal amplifiers that include a plurality of switchable amplifier architectures so that particular gain modes can use dedicated amplifier architectures to provide desired characteristics for those gain modes, such as low noise figure or high linearity. The disclosed signal amplifier architectures provide tailored impedances using a degeneration block or matrix without using switches in the degeneration switching block. The disclosed signal amplifier architectures provide a plurality of gain modes where different gain modes use different paths through the amplifier architecture. Switches that are used to select the path through the amplifier architecture also provide targeted impedances in a degeneration block or matrix. The switches that select the gain path are provided in the amplifier architecture and are thus not needed or used in the degeneration block, thereby reducing the size of the package for the amplifier architecture.Type: ApplicationFiled: December 30, 2021Publication date: August 11, 2022Inventors: Junhyung Lee, Johannes Jacobus Emile Maria Hageraats, Yan Yan, Bumkyum Kim, Aravind Kumar Padyana, Joshua Haeseok Cho, Rimal Deep Singh, Bipul Agarwal
-
Publication number: 20220247364Abstract: Multi-mode broadband low noise amplifiers (LNAs) are disclosed herein. In certain embodiments, an LNA includes a first amplification stage and a second amplification stage having a lower gain than the first amplification stage. The LNA is operable in a plurality of operating modes including a first mode in which the first amplification stage and the second amplification stage operate in a cascade to amplify a radio frequency (RF) receive signal, and a second mode in which the first amplification stage amplifies the RF receive signal and the second amplification stage is bypassed.Type: ApplicationFiled: October 28, 2021Publication date: August 4, 2022Inventors: Aravind Kumar Padyana, Rimal Deep Singh, Junhyung Lee, Bipul Agarwal
-
Patent number: 11329621Abstract: Described herein are variable gain amplifiers and multiplexers that embed programmable attenuators into switchable paths to provide variable gain for individual amplifier inputs. The variable gain for an individual input is provided using an amplification stage that is common for each input of the amplifier. A variable attenuation is provided for individual inputs through a combination of a band selection switch and an attenuation selection branch. Individual inputs can be configured to bypass the variable attenuation in a high gain mode.Type: GrantFiled: October 6, 2020Date of Patent: May 10, 2022Assignee: SKYWORKS SOLUTIONS, INC.Inventors: Junhyung Lee, Rimal Deep Singh, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho, Bipul Agarwal, Aravind Kumar Padyana
-
Publication number: 20210143859Abstract: Described herein are methods for amplifying radio-frequency signals using a variable-gain amplifier with a plurality of input nodes. The methods provide a plurality of gain modes with a low gain mode or bypass mode that follows a bypass path through the variable-gain amplifier and a plurality of higher gain modes that take advantage of tailored impedances for particular gain modes. The tailored impedances can be configured to improve linearity of the amplification process in targeted gain modes. The methods can selectively couple the bypass path to a reference potential node in the plurality of higher gain modes and can selectively decouple the input nodes from a degeneration switching block in the bypass mode.Type: ApplicationFiled: October 13, 2020Publication date: May 13, 2021Inventors: Johannes Jacobus Emile Maria Hageraats, Junhyung Lee, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
-
Publication number: 20210111685Abstract: Described herein are variable gain amplifiers and multiplexers that embed programmable attenuators into switchable paths to provide variable gain for individual amplifier inputs. The variable gain for an individual input is provided using an amplification stage that is common for each input of the amplifier. A variable attenuation is provided for individual inputs through a combination of a band selection switch and an attenuation selection branch. Individual inputs can be configured to bypass the variable attenuation in a high gain mode.Type: ApplicationFiled: October 6, 2020Publication date: April 15, 2021Inventors: Junhyung LEE, Rimal Deep Singh, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho, Bipul Agarwal, Aravind Kumar Padyana
-
Publication number: 20210111675Abstract: Disclosed herein are signal amplifiers having a plurality of amplifier cores. Individual amplifier cores can be designed to enhance particular advantages while reducing other disadvantages. The signal amplifier can then switch between amplifier cores in a particular gain mode to achieve desired performance characteristics (e.g., improving noise figure or linearity). Examples of signal amplifiers disclosed herein include amplifier architectures with a low noise figure amplifier core that reduces the noise figure and a linearity boost amplifier core that increases linearity. The disclosed signal amplifiers can switch between a first active core and a second active core for a single or particular gain mode to achieve desired signal characteristics during different time periods.Type: ApplicationFiled: September 15, 2020Publication date: April 15, 2021Inventors: Junhyung Lee, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
-
Patent number: 10804951Abstract: Described herein are variable-gain amplifier configurations that include a multi-input gain stage, a cascode buffer, and a bypass block. Degeneration switching blocks can be used for the entire multi-input gain stage or for individual input nodes of the multi-input gain stage. This advantageously reduces or eliminates performance penalties in one or more gain modes. The variable impedances can be configured to improve linearity of the amplification process in targeted gain modes. The variable gain amplifier can be configured to provide a low-loss bypass mode in a low gain mode to improve signal quality.Type: GrantFiled: January 7, 2020Date of Patent: October 13, 2020Assignee: SKYWORKS SOLUTIONS, INC.Inventors: Johannes Jacobus Emile Maria Hageraats, Junhyung Lee, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
-
Patent number: 10797668Abstract: Described herein are variable gain amplifiers and multiplexers that embed programmable attenuators into switchable paths to provide variable gain for individual amplifier inputs. The variable gain for an individual input is provided using a amplification stage that is common for each input of the amplifier. A variable attenuation is provided for individual inputs through a combination of a band selection switch and an attenuation selection branch. The attenuation can be tailored for individual inputs and can depend on a gain mode of the amplifier.Type: GrantFiled: July 6, 2019Date of Patent: October 6, 2020Assignee: SKYWORKS SOLUTIONS, INC.Inventors: Junhyung Lee, Rimal Deep Singh, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho, Bipul Agarwal, Aravind Kumar Padyana
-
Patent number: 10778150Abstract: Disclosed herein are signal amplifiers having a plurality of amplifier cores. Individual amplifier cores can be designed for particular gain modes to enhance particular advantages while reducing other disadvantages. The signal amplifier can then switch between amplifier cores when switching gain modes to achieve desired performance characteristics (e.g., improving noise figure or linearity). Examples of signal amplifiers disclosed herein include amplifier architectures with a high gain amplifier core that reduces the noise figure and a linearity boost amplifier core that increases linearity (e.g., for lower gain modes). The disclosed signal amplifiers have a first active core with amplification chains for each of a plurality of inputs and a second active core with a single amplification chain to amplify signals received at the plurality of inputs.Type: GrantFiled: August 20, 2019Date of Patent: September 15, 2020Assignee: SKYWORKS SOLUTIONS, INC.Inventors: Junhyung Lee, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
-
Publication number: 20200145039Abstract: Described herein are variable-gain amplifier configurations that include a multi-input gain stage, a cascode buffer, and a bypass block. Degeneration switching blocks can be used for the entire multi-input gain stage or for individual input nodes of the multi-input gain stage. This advantageously reduces or eliminates performance penalties in one or more gain modes. The variable impedances can be configured to improve linearity of the amplification process in targeted gain modes. The variable gain amplifier can be configured to provide a low-loss bypass mode in a low gain mode to improve signal quality.Type: ApplicationFiled: January 7, 2020Publication date: May 7, 2020Inventors: Johannes Jacobus Emile Maria Hageraats, Junhyung Lee, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
-
Publication number: 20200052652Abstract: Disclosed herein are signal amplifiers having a plurality of amplifier cores. Individual amplifier cores can be designed for particular gain modes to enhance particular advantages while reducing other disadvantages. The signal amplifier can then switch between amplifier cores when switching gain modes to achieve desired performance characteristics (e.g., improving noise figure or linearity). Examples of signal amplifiers disclosed herein include amplifier architectures with a high gain amplifier core that reduces the noise figure and a linearity boost amplifier core that increases linearity (e.g., for lower gain modes). The disclosed signal amplifiers have a first active core with amplification chains for each of a plurality of inputs and a second active core with a single amplification chain to amplify signals received at the plurality of inputs.Type: ApplicationFiled: August 20, 2019Publication date: February 13, 2020Inventors: Junhyung Lee, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
-
Patent number: 10530412Abstract: Described herein are variable gain amplifiers that selectively provide variable or tailored impedances at a degeneration block and/or feedback block depending at least in part on a gain mode of the variable gain amplifier. This advantageously reduces or eliminates performance penalties in one or more gain modes. The variable impedances can be configured to improve linearity of the amplification process in targeted gain modes. The variable gain amplifier can be configured to provide a low-loss bypass mode in a low gain mode to improve signal quality. The degeneration block can be selectively isolated from a reference potential node to improve performance.Type: GrantFiled: March 12, 2019Date of Patent: January 7, 2020Assignee: SKYWORKS SOLUTIONS, INC.Inventors: Johannes Jacobus Emile Maria Hageraats, Junhyung Lee, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
-
Publication number: 20200007102Abstract: Described herein are variable gain amplifiers and multiplexers that embed programmable attenuators into switchable paths to provide variable gain for individual amplifier inputs. The variable gain for an individual input is provided using a amplification stage that is common for each input of the amplifier. A variable attenuation is provided for individual inputs through a combination of a band selection switch and an attenuation selection branch. The attenuation can be tailored for individual inputs and can depend on a gain mode of the amplifier.Type: ApplicationFiled: July 6, 2019Publication date: January 2, 2020Inventors: Junhyung LEE, Rimal Deep Singh, Johannes Jacobus Emile Maria Hageraats, Joshua Haeseok Cho, Bipul Agarwal, Aravind Kumar Padyana