Patents by Inventor Ardeshir Riahi

Ardeshir Riahi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100284819
    Abstract: Turbine blades and methods of forming modified turbine blades and turbine rotors for use in an engine are provided. In an embodiment, by way of example only, a turbine blade includes a platform and an airfoil. The platform includes a surface configured to define a portion of a flowpath, and the surface includes an initial contour configured to plastically deform into an intended final contour after an initial exposure of the blade to an operation of the engine. The airfoil extends from the platform.
    Type: Application
    Filed: November 18, 2008
    Publication date: November 11, 2010
    Applicant: Honeywell International Inc.
    Inventors: Bob Mitlin, Mark C. Morris, Steve Halfmann, Ardeshir Riahi
  • Publication number: 20100158700
    Abstract: A turbine blade assembly includes an airfoil, a platform, and a first cover plate. A center flow path extends through the platform in communication with an internal cooling circuit of the airfoil, which extends from a first side of the platform. A second side of the platform is located opposite the platform from the first side. An edge of the platform extends between the first and second sides and, a first passage is formed between the first and second sides and includes a first inlet and a first outlet. The first passage extends from the center flow path toward the platform edge, and a first groove is formed on the second side of the platform and extends from the first outlet of the first passage toward the edge of the platform. The first cover plate is disposed over the second side of the platform covering the first groove.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 24, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Kin Poon, Rajiv Rana, Bob Mitlin, Ardeshir Riahi, David Chou, Steve Halfmann, Frank Mignano
  • Publication number: 20090175733
    Abstract: An air-cooled turbine blade and methods of manufacturing the blade are provided. The blade includes a suction side flow circuit formed within its interior and defined at least by an interior surface of a convex suction side wall, a pressure side flow circuit formed within the blade interior and defined at least by an interior surface of a concave pressure side wall, and a center flow circuit including a first section and a second section, the first section disposed between the suction side flow circuit and the pressure side flow circuit, and the second section in flow communication with the first section and a plurality of openings of a leading edge wall and defined at least partially by an interior surface of the leading edge wall.
    Type: Application
    Filed: January 9, 2008
    Publication date: July 9, 2009
    Applicant: Honeywell International, Inc.
    Inventors: Kin C. Poon, Malak F. Malak, Rajiv Rana, Ardeshir Riahi, David H. Chou
  • Publication number: 20090148305
    Abstract: A turbine blade includes a convex suction side wall, a concave pressure side wall, a tip wall, an internal cooling circuit, and a plurality of tip edge channels. The tip wall is recessed from a first tip edge of the suction side wall and a second tip edge of the concave pressure side wall to define a suction side wall tip section and a pressure side wall tip section, and the suction side wall tip section is shorter than the pressure side wall tip section. The internal cooling circuit is formed at least partially between the convex suction side wall, the concave pressure side wall, and the tip wall. The plurality of tip edge channels formed through the first tip edge of the convex suction side wall extend to the internal cooling circuit. Methods of manufacturing turbine blades are also provided.
    Type: Application
    Filed: December 10, 2007
    Publication date: June 11, 2009
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Ardeshir Riahi, Kin Poon, David Chou, Malak F. Malak
  • Patent number: 7223072
    Abstract: An airfoil for a gas turbine engine blade includes a plurality of film cooling holes extending through its outer surface. The film cooling holes are formed by defining at least a first datum structure and a second datum structure, and then forming each film cooling hole at a location on the airfoil outer surface relative to the first and second datum structures. As a result, each film cooling hole has a centerline extending therethrough that forms a compound angle with respect to a tangent to the outer surface, and the distance between the centerlines of each film cooling hole is at least a predetermined minimum distance.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: May 29, 2007
    Assignee: Honeywell International, Inc.
    Inventors: Ardeshir Riahi, Robert McDonald, Frederick G. Borns
  • Publication number: 20060285968
    Abstract: Disclosed herein is an apparatus comprising a disk coverplate for a turbine rotor, the disk coverplate comprising a plurality of cooling holes, wherein the distance between the centers of any two adjacent cooling holes is greater than twice the average diameter of the two adjacent cooling holes. A method to control turbine cooling air flow is also disclosed.
    Type: Application
    Filed: June 16, 2005
    Publication date: December 21, 2006
    Inventors: Ardeshir Riahi, Frederick Borns, Vivek Agarwal
  • Publication number: 20050163609
    Abstract: An airfoil for a gas turbine engine blade includes a plurality of film cooling holes extending through its outer surface. The film cooling holes are formed by defining at least a first datum structure and a second datum structure, and then forming each film cooling hole at a location on the airfoil outer surface relative to the first and second datum structures. As a result, each film cooling hole has a centerline extending therethrough that forms a compound angle with respect to a tangent to the outer surface, and the distance between the centerlines of each film cooling hole is at least a predetermined minimum distance.
    Type: Application
    Filed: January 27, 2004
    Publication date: July 28, 2005
    Inventors: Ardeshir Riahi, Robert McDonald, Frederick Borns
  • Patent number: 6792757
    Abstract: A heat shield for a combustor dome includes U-shaped baffles on the outer diameter area of the upstream surface of the heat shield. The baffles are clocked with respect to the impingement openings in the combustor dome. The baffles increase cooling of the heat shield by segregating the cooling air flow from the impingement openings and by reducing cross-flow at the outer diameter of the heat shield. The baffles also function as heat shield stiffeners. Slots extend radially inward from the outer rim of the heat shield. Keyholes are at the inner ends of the slots. The slots and keyholes reduce the hoop stresses of the heat shield.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: September 21, 2004
    Assignee: Honeywell International Inc.
    Inventors: Frederick G. Borns, Ardeshir Riahi
  • Publication number: 20040083735
    Abstract: A heat shield for a combustor dome includes U-shaped baffles on the outer diameter area of the upstream surface of the heat shield. The baffles are clocked with respect to the impingement openings in the combustor dome. The baffles increase cooling of the heat shield by segregating the cooling air flow from the impingement openings and by reducing cross-flow at the outer diameter of the heat shield. The baffles also function as heat shield stiffeners. Slots extend radially inward from the outer rim of the heat shield. Keyholes are at the inner ends of the slots. The slots and keyholes reduce the hoop stresses of the heat shield.
    Type: Application
    Filed: November 5, 2002
    Publication date: May 6, 2004
    Applicant: Honeywell International Inc.
    Inventors: Frederick G. Borns, Ardeshir Riahi
  • Patent number: 6554562
    Abstract: A method and apparatus to reduce the average and maximum temperatures to which the nozzles in the hot-section of gas-turbine engine are subjected is described. The method relates to the circumferential alignment of fuel nozzles and downstream turbine nozzles in a gas turbine engine. This situates the hot-streak emerging from each fuel nozzle in between the like-numbered turbine nozzle airfoils. The most severe operating condition for reducing the durability of nozzle airfoils is the one generating hot operating temperature conditions. By identifying the temperature profile passing through downstream nozzle airfoils, airfoils in static stages can be selectively spaced around the circumference of the ring attached to the casing of the gas turbine engine to avoid high temperature exposure to the airfoils. This method and apparatus mitigates the worst oxidation and thermo-mechanical fatigue damage in the airfoils by allowing the hot gas regions to pass through the path in between two adjacent airfoils.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: April 29, 2003
    Assignee: Honeywell International, Inc.
    Inventors: Rodolphe Dudebout, Mark C. Morris, Douglas P. Freiberg, Craig W. McKeever, Richard J. Musiol, Ardeshir Riahi, William J. Howe
  • Publication number: 20030002975
    Abstract: A method and apparatus to reduce the average and maximum temperatures to which the nozzles in the hot-section of gas-turbine engine are subjected is described. The method relates to the circumferential alignment of fuel nozzles and downstream turbine nozzles in a gas turbine engine. This situates the hot-streak emerging from each fuel nozzle in between the like-numbered turbine nozzle airfoils. The most severe operating condition for reducing the durability of nozzle airfoils is the one generating hot operating temperature conditions. By identifying the temperature profile passing through downstream nozzle airfoils, airfoils in static stages can be selectively spaced around the circumference of the ring attached to the casing of the gas turbine engine to avoid high temperature exposure to the airfoils. This method and apparatus mitigates the worst oxidation and thermo-mechanical fatigue damage in the airfoils by allowing the hot gas regions to pass through the path in between two adjacent airfoils.
    Type: Application
    Filed: June 15, 2001
    Publication date: January 2, 2003
    Applicant: Honeywell International, Inc.
    Inventors: Rodolphe Dudebout, Mark C. Morris, Douglas P. Freiberg, Craig W. McKeever, Richard J. Musiol, Ardeshir Riahi, William J. Howe