Patents by Inventor Aristos A. Aristidou

Aristos A. Aristidou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140377794
    Abstract: Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.
    Type: Application
    Filed: September 6, 2014
    Publication date: December 25, 2014
    Inventors: Pim Van Hoek, Aristos Aristidou, Brian J. Rush
  • Publication number: 20140360376
    Abstract: This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allows recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Applicant: GEVO, INC.
    Inventors: William A. Evanko, Aharon M. Eyal, David A. Glassner, Fudu Miao, Kent Evans, Andrew C. Hawkins, Aristos A. Aristidou, Patrick R. Gruber
  • Publication number: 20140356920
    Abstract: This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allow recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Applicant: Gevo, Inc.
    Inventors: William A. Evanko, Mark Brothers, Ken Drobish, Aristos A. Aristidou, Kent Evans, Andrew C. Hawkins, Scott Lucas
  • Patent number: 8895272
    Abstract: Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: November 25, 2014
    Assignee: GEVO, Inc.
    Inventors: Andrew C. Hawkins, David A. Glassner, Thomas Buelter, James L. Wade, Peter Meinhold, Matthew W. Peters, Patrick R. Gruber, William A. Evanko, Aristos A. Aristidou, Marco Landwehr
  • Publication number: 20140308721
    Abstract: The present invention provides recombinant microorganisms comprising isobutanol producing metabolic pathway with at least one isobutanol pathway enzyme localized in the cytosol, wherein said recombinant microorganism is selected to produce isobutanol from a carbon source. Methods of using said recombinant microorganisms to produce isobutanol are also provided. In various aspects of the invention, the recombinant microorganisms may comprise a cytosolically active isobutanol pathway enzymes. In some embodiments, the invention provides mutated, modified, and/or chimeric isobutanol pathway enzymes with cytosolic activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: January 17, 2014
    Publication date: October 16, 2014
    Applicant: Gevo, Inc.
    Inventors: Jun Urano, Catherine Asleson Dundon, Peter Meinhold, Reid M. Renny Feldman, Aristos A. Aristidou, Andrew Hawkins, Thomas Buelter, Matthew Peters, Doug Lies, Stephanie Porter-Scheinman, Christopher Smith, Ruth Berry, Ishmeet Kalra
  • Patent number: 8828707
    Abstract: Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: September 9, 2014
    Assignee: Cargill, Incorporated
    Inventors: Pim Van Hoek, Aristos Aristidou, Brian Rush
  • Publication number: 20140212953
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces Glade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: September 19, 2013
    Publication date: July 31, 2014
    Applicant: GEVO, Inc.
    Inventors: Thomas BUELTER, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Kent Evans, Julie Kelly, Ruth Berry
  • Publication number: 20140080192
    Abstract: Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 20, 2014
    Applicant: Cargill Incorporated
    Inventors: Vineet Rajgarhia, Kari Koivuranta, Merja Penttila, Marja Ilmen, Pirkko Suominen, Aristos Aristidou, Christopher Kenneth Miller, Stacey Olson, Laura Ruohonen
  • Publication number: 20140080188
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of an acetolactate-derived by-product such as 2,3-butanediol. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: March 9, 2012
    Publication date: March 20, 2014
    Applicant: GEVO, Inc.
    Inventors: Christopher Smith, Thomas Buelter, Peter Meinhold, Aristos Aristidou, Stephanie Porter-Scheinman
  • Publication number: 20140038253
    Abstract: The present application discloses the identification of the novel K. marxianus xylose transporter genes KHT105 and RAG4, as well as the identification of a novel set of I. orientalis pentose phosphate pathway genes The present application further discloses a series of genetically modified yeast cells comprising various combinations of arabinose fermentation pathways, xylose fermentation pathways, pentose phosphate pathways, and/or xylose transporter genes, and methods of culturing these cells to produce ethanol in fermentation media containing xylose.
    Type: Application
    Filed: April 11, 2012
    Publication date: February 6, 2014
    Applicant: CARGILL, INCORPORATED
    Inventors: Holly J. Jessen, Jian Yi, Joshua Lundorff, Hans Liao, Ana Negrete-Raymond, Pirkko Suominen, Aristos Aristidou
  • Patent number: 8623633
    Abstract: Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
    Type: Grant
    Filed: May 14, 2011
    Date of Patent: January 7, 2014
    Assignee: Cargill Incorporated
    Inventors: Vineet Rajgarhia, Kari Koivuranta, Merja Penttilä, Marja Ilmen, Pirkko Suominen, Aristos Aristidou, Christopher Kenneth Miller, Stacey Olson, Laura Ruohonen
  • Patent number: 8614077
    Abstract: This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allows recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: December 24, 2013
    Assignee: Gevo, Inc.
    Inventors: William A. Evanko, Aharon M. Eyal, David A. Glassner, Fudu Miao, Aristos A. Aristidou, Kent Evans, Patrick R. Gruber, Andrew C. Hawkins, Peter Meinhold, Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano
  • Publication number: 20130273622
    Abstract: Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 17, 2013
    Inventors: Andrew C. Hawkins, David A. Glassner, Thomas Buelter, James L. Wade, Peter Meinhold, Matthew W. Peters, Patrick R. Gruber, William A. Evanko, Aristos A. Aristidou, Marco Landwehr
  • Publication number: 20130252298
    Abstract: The present invention provides recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise a modification resulting in the reduction of pyruvate decarboxylase and/or glycerol-3-phosphate dehydrogenase activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: May 31, 2013
    Publication date: September 26, 2013
    Applicant: GEVO, INC.
    Inventors: Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano, Peter Meinhold, Aristos Aristidou, Catherine Asleson Dundon, Christopher Smith
  • Publication number: 20130183730
    Abstract: This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allows recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
    Type: Application
    Filed: November 22, 2011
    Publication date: July 18, 2013
    Applicant: GENO, INC.
    Inventors: William A. Evanko, Aharon M. Eyal, David A. Glassner, Fudu Miao, Aristos A. Aristidou, Kent Evans, Patrick R. Gruber, Andrew C. Hawkins, Peter Meinhold, Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano
  • Patent number: 8455239
    Abstract: The present invention provides recombinant mircoorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise a modification resulting in the reduction of pyruvate decarboxylase and/or glycerol-3-phosphate dehydrogenase activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: June 4, 2013
    Assignee: Gevo, Inc.
    Inventors: Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano, Peter Meinhold, Aristos Aristidou, Catherine Asleson Dundon, Christopher Smith
  • Publication number: 20130122561
    Abstract: This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allow recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
    Type: Application
    Filed: August 15, 2012
    Publication date: May 16, 2013
    Applicant: Gevo, Inc.
    Inventors: William A. Evanko, Mark Brothers, Ken Drobish, Aristos A. Aristidou, Kent Evans, Andrew C. Hawkins, Scott Lucas
  • Patent number: 8440451
    Abstract: Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
    Type: Grant
    Filed: May 14, 2011
    Date of Patent: May 14, 2013
    Assignee: Cargill, Incorporated
    Inventors: Vineet Rajgarhia, Kari Koivuranta, Merja Penttilä, Marja Ilmen, Pirkko Suominen, Aristos Aristidou, Christopher Kenneth Miller, Stacey Olson, Laura Ruohonen
  • Patent number: 8431374
    Abstract: Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: April 30, 2013
    Assignee: Gevo, Inc.
    Inventors: Andrew C. Hawkins, David A. Glassner, Thomas Buelter, James Wade, Peter Meinhold, Matthew W. Peters, Patrick R. Gruber, William A. Evanko, Aristos A. Aristidou, Marco Landwehr
  • Publication number: 20120288910
    Abstract: The present invention is directed to recombinant microorganisms comprising one or more dihydroxyacid dehydratase (DHAD)-requiring biosynthetic pathways and methods of using said recombinant microorganisms to produce beneficial metabolites derived from said DHAD-requiring biosynthetic pathways. In various aspects of the invention, the recombinant microorganisms may be engineered to overexpress one or more polynucleotides encoding one or more Aft proteins or homologs thereof. In some embodiments, the recombinant microorganisms may comprise a cytosolically localized DHAD enzyme. In additional embodiments, the recombinant microorganisms may comprise a mitochondrially localized DHAD enzyme.
    Type: Application
    Filed: June 20, 2012
    Publication date: November 15, 2012
    Applicant: Gevo, Inc.
    Inventors: Jun Urano, Catherine Asleson Dundon, Peter Meinhold, Reid M. Renny Feldman, Aristos Aristidou, Andrew Hawkins, Thomas Buelter, Matthew Peters, Doug Lies, Stephanie Porter-Scheinman, Christopher Smith, Lynne H. Albert