Patents by Inventor Arnost Kopta

Arnost Kopta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10629714
    Abstract: An IGBT is provided with at least two first cells, each of which have an n doped source layer, a p doped base layer, an n doped enhancement layer. The base layer separates the source layer from the enhancement layer, an n-doped drift layer and a p doped collector layer. Two trench gate electrodes are arranged on the lateral sides of the first cell. The transistor includes at least one second cell between the trench gate electrodes of two neighboring first cells, which has on the emitter side a p+ doped well and a further n doped enhancement layer which separates the well from the neighboring trench gate electrodes. An insulator layer stack is arranged on top of the second cell on the emitter side to insulate the second cell and the neighboring trench gate electrodes from the metal emitter electrode.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: April 21, 2020
    Assignee: ABB Schweiz AG
    Inventors: Chiara Corvasce, Arnost Kopta, Maxi Andenna, Munaf Rahimo
  • Publication number: 20190109218
    Abstract: An IGBT is provided comprising at least two first cells (1, 1?), each of which having an n doped source layer (2), a p doped base layer (3), an n doped enhancement layer (4), wherein the base layer (3) separates the source layer (2) from the enhancement layer (4), an n? doped drift layer (5) and a p doped collector layer (6). Two trench gate electrodes (7, 7?) are arranged on the lateral sides of the first cell (1, 1?). The transistor comprises at least one second cell (15) between the trench gate electrodes (7, 7?) of two neighboured first cells (1, 1?), which has on the emitter side (90) a p+ doped well (8) and a further n doped enhancement layer (40, 40?) which separates the well (8) from the neighboured trench gate electrodes (7, 7?).
    Type: Application
    Filed: October 10, 2018
    Publication date: April 11, 2019
    Inventors: Chiara Corvasce, Arnost Kopta, Maxi Andenna, Munaf Rahimo
  • Patent number: 10141196
    Abstract: The present application contemplates a method for manufacturing a power semiconductor device.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: November 27, 2018
    Assignee: ABB Schweiz AG
    Inventors: Sven Matthias, Charalampos Papadopoulos, Chiara Corvasce, Arnost Kopta
  • Patent number: 10109725
    Abstract: A reverse-conducting MOS device is provided having an active cell region and a termination region. Between a first and second main side. The active cell region comprises a plurality of MOS cells with a base layer of a second conductivity type. On the first main side a bar of the second conductivity type, which has a higher maximum doping concentration than the base layer, is arranged between the active cell region and the termination region, wherein the bar is electrically connected to the first main electrode. On the first main side in the termination region a variable-lateral-doping layer of the second conductivity type is arranged. A protection layer of the second conductivity type is arranged in the variable-lateral-doping layer, which protection layer has a higher maximum doping concentration than the maximum doping concentration of the variable-lateral-doping layer in a region attached to the protection layer.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: October 23, 2018
    Assignee: ABB Schweiz AG
    Inventors: Liutauras Storasta, Chiara Corvasce, Manuel Le Gallo, Munaf Rahimo, Arnost Kopta
  • Publication number: 20180012773
    Abstract: The present application contemplates a method for manufacturing a power semiconductor device.
    Type: Application
    Filed: September 25, 2017
    Publication date: January 11, 2018
    Inventors: Sven Matthias, Charalampos Papadopoulos, Chiara Corvasce, Arnost Kopta
  • Publication number: 20170294526
    Abstract: A reverse-conducting MOS device is provided having an active cell region and a termination region. Between a first and second main side. The active cell region comprises a plurality of MOS cells with a base layer of a second conductivity type. On the first main side a bar of the second conductivity type, which has a higher maximum doping concentration than the base layer, is arranged between the active cell region and the termination region, wherein the bar is electrically connected to the first main electrode. On the first main side in the termination region a variable-lateral-doping layer of the second conductivity type is arranged. A protection layer of the second conductivity type is arranged in the variable-lateral-doping layer, which protection layer has a higher maximum doping concentration than the maximum doping concentration of the variable-lateral-doping layer in a region attached to the protection layer.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 12, 2017
    Inventors: Liutauras Storasta, Chiara Corvasce, Manuel Le Gallo, Munaf Rahimo, Arnost Kopta
  • Patent number: 9654085
    Abstract: A reverse-conducting insulated gate bipolar transistor, particularly a bi-mode insulated gate transistor, is controlled by responding to an ON command by applying high-level gate voltage for a first period, during which a current is fed into a connection point, from which it flows either through the RC-IGBT or along a different path. Based hereon, it is determined whether the RC-IGBT conducts in its forward/IGBT or reverse/diode mode, and the RC-IGBT is either driven at high or low gate voltage. Subsequent conduction mode changes may be monitored in the same way, and the gate voltage may be adjusted accordingly. A special turn-off procedure may be applied in response to an OFF command in cases where the RC-IGBT conducts in the reverse mode, wherein a high-level pulse is applied for a second period before the gate voltage goes down to turn-off level.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 16, 2017
    Assignee: ABB SCHWEIZ AG
    Inventors: Falah Hosini, Madhan Mohan, Siva Nagi Reddy Pamulapati, Arnost Kopta, Munaf Rahimo, Raffael Schnell, Ulrich Schlapbach
  • Patent number: 9324708
    Abstract: An exemplary power semiconductor device with a wafer having an emitter electrode on an emitter side and a collector electrode on a collector side, an (n-) doped drift layer, an n-doped first region, a p-doped base layer, an n-doped source region, and a gate electrode, all of which being formed between the emitter and collector electrodes. The emitter electrode contacts the base layer and the source region within a contact area. An active semiconductor cell is formed within the wafer, and includes layers that lie in orthogonal projection with respect to the emitter side of the contact area of the emitter electrode. The device also includes a p-doped well, which is arranged in the same plane as the base layer, but outside the active cell. The well is electrically connected to the emitter electrode at least one of directly or via the base layer.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: April 26, 2016
    Assignee: ABB Technology AG
    Inventors: Liutauras Storasta, Arnost Kopta, Munaf Rahimo
  • Patent number: 9153676
    Abstract: An IGBT has layers between emitter and collector sides, including a drift layer, a base layer electrically contacting an emitter electrode and completely separated from the drift layer, first and second source regions arranged on the base layer towards the emitter side and electrically contacting the emitter electrode, and first and second trench gate electrodes. The first trench gate electrodes are separated from the base layer, the first source region and the drift layer by a first insulating layer. A channel is formable between the emitter electrode, the first source region, the base layer and the drift layer. A second insulating layer is arranged on top of the first trench gate electrodes. An enhancement layer separates the base layer from the drift layer. The second trench gate electrode is separated from the base layer, the enhancement layer and the drift layer by a third insulating layer.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: October 6, 2015
    Assignee: ABB TECHNOLOGY AG
    Inventors: Munaf Rahimo, Maxi Andenna, Chiara Corvasce, Arnost Kopta
  • Patent number: 9105680
    Abstract: An IGBT has layers between emitter and collector sides. The layers include a collector layer on the collector side, a drift layer, a base layer of a second conductivity type, a first source region arranged on the base layer towards the emitter side, a trench gate electrode arranged lateral to the base layer and extending deeper into the drift layer than the base layer, a well arranged lateral to the base layer and extending deeper into the drift layer than the base layer, an enhancement layer surrounding the base layer so as to completely separate the base layer from the drift layer and the well, an electrically conducting layer covering the well and separated from the well by a second electrically insulating layer, and a third insulating layer having a recess on top of the electrically conducting layer such that the electrically conducting layer electrically contacts a emitter electrode.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: August 11, 2015
    Assignee: ABB TECHNOLOGY AG
    Inventors: Maxi Andenna, Munaf Rahimo, Chiara Corvasce, Arnost Kopta
  • Patent number: 9099520
    Abstract: An IGBT has layers between emitter and collector sides. The layers include a drift layer, a base layer electrically contacting an emitter electrode and separated from the drift layer, a first source region arranged on the base layer towards the emitter side and electrically contacting the emitter electrode, and a first trench gate electrode arranged lateral to the base layer and separated from the base layer, the first source region and the drift layer by a first insulating layer. A channel exits between the emitter electrode, the first source region, the base layer and the drift layer. A second insulating layer is arranged on top of the first trench gate electrode. An enhancement layer separates the base layer from the drift layer in a plane parallel to the emitter side. A grounded gate electrode includes a second, grounded trench gate electrode and an electrically conducting layer.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: August 4, 2015
    Assignee: ABB TECHNOLOGY AG
    Inventors: Munaf Rahimo, Maxi Andenna, Chiara Corvasce, Arnost Kopta
  • Patent number: 9064925
    Abstract: A power semiconductor device is disclosed with layers of different conductivity types between an emitter electrode on an emitter side and a collector electrode on a collector side. The device can include a drift layer, a first base layer in direct electrical contact to the emitter electrode, a first source region embedded into the first base layer which contacts the emitter electrode and has a higher doping concentration than the drift layer, a first gate electrode in a same plane and lateral to the first base layer, a second base layer in the same plane and lateral to the first base layer, a second gate electrode on top of the emitter side, and a second source region electrically insulated from the second base layer, the second source region and the drift layer by a second insulating layer.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: June 23, 2015
    Assignee: ABB TECHNOLOGY AG
    Inventors: Munaf Rahimo, Arnost Kopta, Christoph Von Arx, Maxi Andenna
  • Patent number: 9048340
    Abstract: A power semiconductor device includes a first layer of a first conductivity type, which has a first main side and a second main side opposite the first main side. A second layer of a second conductivity type is arranged in a central region of the first main side and a fourth electrically conductive layer is arranged on the second layer. On the second main side a third layer with a first zone of the first conductivity type with a higher doping than the first layer is arranged followed by a fifth electrically conductive layer. The area between the second layer and the first zone defines an active area. The third layer includes at least one second zone of the second conductivity type, which is arranged in the same plane as the first zone. A sixth layer of the first conductivity type with a doping, which is lower than that of the first zone and higher that that of the first layer, is arranged between the at least one second zone and the first layer.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: June 2, 2015
    Assignee: ABB TECHNOLOGY AG
    Inventor: Arnost Kopta
  • Patent number: 9006041
    Abstract: A method for manufacturing a bipolar punch-through semiconductor device is disclosed, which includes providing a wafer having a first and a second side, wherein on the first side a high-doped layer of the first conductivity type having constant high doping concentration is arranged; epitaxially growing a low-doped layer of the first conductivity type on the first side; performing a diffusion step by which a diffused inter-space region is created at the inter-space of the layers; creating at least one layer of the second conductivity type on the first side; and reducing the wafer thickness within the high-doped layer on the second side so that a buffer layer is created, which can include the inter-space region and the remaining part of the high-doped layer, wherein the doping profile of the buffer layer decreases steadily from the doping concentration of the high-doped region to the doping concentration of the drift layer.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: April 14, 2015
    Assignee: ABB Technology AG
    Inventors: Munaf Rahimo, Arnost Kopta, Thomas Clausen, Maxi Andenna
  • Patent number: 8912623
    Abstract: A fast recovery diode includes a base layer of a first conductivity type. The base layer has a cathode side and an anode side opposite the cathode side. An anode buffer layer of a second conductivity type having a first depth and a first maximum doping concentration is arranged on the anode side. An anode contact layer of the second conductivity type having a second depth, which is lower than the first depth, and a second maximum doping concentration, which is higher than the first maximum doping concentration, is also arranged on the anode side. A space charge region of the anode junction at a breakdown voltage is located in a third depth between the first and second depths. A defect layer with a defect peak is arranged between the second and third depths.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: December 16, 2014
    Assignee: ABB Technology AG
    Inventors: Jan Vobecky, Arnost Kopta, Marta Cammarata
  • Publication number: 20140320178
    Abstract: A reverse-conducting insulated gate bipolar transistor, particularly a bi-mode insulated gate transistor, is controlled by responding to an ON command by applying high-level gate voltage for a first period, during which a current is fed into a connection point, from which it flows either through the RC-IGBT or along a different path. Based hereon, it is determined whether the RC-IGBT conducts in its forward/IGBT or reverse/diode mode, and the RC-IGBT is either driven at high or low gate voltage. Subsequent conduction mode changes may be monitored in the same way, and the gate voltage may be adjusted accordingly. A special turn-off procedure may be applied in response to an OFF command in cases where the RC-IGBT conducts in the reverse mode, wherein a high-level pulse is applied for a second period before the gate voltage goes down to turn-off level.
    Type: Application
    Filed: November 22, 2011
    Publication date: October 30, 2014
    Applicant: ABB TECHNOLOGY AG
    Inventors: Falah Hosini, Madhan Mohan, Siva Nagi Reddy Pamulapati, Arnost Kopta, Munaf Rahimo, Raffael Schnell, Ulrich Schlapbach
  • Patent number: 8829571
    Abstract: A maximum-punch-through semiconductor device such as an insulated gate bipolar transistor (IGBT) or a diode, and a method for producing same are disclosed. The MPT semiconductor device can include at least a two-layer structure having an emitter metallization, a channel region, a base layer with a predetermined doping concentration ND, a buffer layer and a collector metallization. A thickness W of the base layer can be determined by: W = V bd + V pt 4010 ? ? kV ? ? cm - 5 / 8 * ( N D ) 1 / 8 wherein a punch-through voltage Vpt of the semiconductor device is between 70% and 99% of a break down voltage Vbd of the semiconductor device, and wherein the thickness W is a minimum thickness of the base layer between a junction to the channel region and the buffer layer.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: September 9, 2014
    Assignee: ABB Technology AG
    Inventors: Munaf Rahimo, Arnost Kopta, Jan Vobecky, Wolfgang Janisch
  • Publication number: 20140124830
    Abstract: An IGBT has layers between emitter and collector sides, including a drift layer, a base layer electrically contacting an emitter electrode and completely separated from the drift layer, first and second source regions arranged on the base layer towards the emitter side and electrically contacting the emitter electrode, and first and second trench gate electrodes. The first trench gate electrodes are separated from the base layer, the first source region and the drift layer by a first insulating layer. A channel is formable between the emitter electrode, the first source region, the base layer and the drift layer. A second insulating layer is arranged on top of the first trench gate electrodes. An enhancement layer separates the base layer from the drift layer. The second trench gate electrode is separated from the base layer, the enhancement layer and the drift layer by a third insulating layer.
    Type: Application
    Filed: January 14, 2014
    Publication date: May 8, 2014
    Applicant: ABB Technology AG
    Inventors: Munaf RAHIMO, Maxi ANDENNA, Chiara CORVASCE, Arnost KOPTA
  • Publication number: 20140124831
    Abstract: An IGBT has layers between emitter and collector sides. The layers include a drift layer, a base layer electrically contacting an emitter electrode and separated from the drift layer, a first source region arranged on the base layer towards the emitter side and electrically contacting the emitter electrode, and a first trench gate electrode arranged lateral to the base layer and separated from the base layer, the first source region and the drift layer by a first insulating layer. A channel exits between the emitter electrode, the first source region, the base layer and the drift layer. A second insulating layer is arranged on top of the first trench gate electrode. An enhancement layer separates the base layer from the drift layer in a plane parallel to the emitter side. A grounded gate electrode includes a second, grounded trench gate electrode and an electrically conducting layer.
    Type: Application
    Filed: January 14, 2014
    Publication date: May 8, 2014
    Applicant: ABB Technology AG
    Inventors: Munaf RAHIMO, Maxi Andenna, Chiara Corvasce, Arnost Kopta
  • Publication number: 20140124829
    Abstract: An IGBT has layers between emitter and collector sides. The layers include a collector layer on the collector side, a drift layer, a base layer of a second conductivity type, a first source region arranged on the base layer towards the emitter side, a trench gate electrode arranged lateral to the base layer and extending deeper into the drift layer than the base layer, a well arranged lateral to the base layer and extending deeper into the drift layer than the base layer, an enhancement layer surrounding the base layer so as to completely separate the base layer from the drift layer and the well, an electrically conducting layer covering the well and separated from the well by a second electrically insulating layer, and a third insulating layer having a recess on top of the electrically conducting layer such that the electrically conducting layer electrically contacts a emitter electrode.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 8, 2014
    Applicant: ABB TECHNOLOGY AG
    Inventors: Maxi ANDENNA, Munaf RAHIMO, Chiara CORVASCE, Arnost KOPTA