Patents by Inventor Arthur J. Epstein

Arthur J. Epstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8808861
    Abstract: An organic-based magnet is formed by molecular layer deposition (MLD) of a first compound and MLD of a second compound. The first or second compound containing a metal-containing compound. The first and second compounds being reactive with each other to form a first layer organic-based magnet. A laminate composite includes a first monolayer including a metal bonded to a magnet forming organic compound. A second monolayer may be in direct contact with the first monolayer. One of the first monolayer and the second monolayer having an induced magnetization when exposed to a magnetic field. A device includes the laminate composite and a nonmagnetic film thereon. A method of making an organic magnet on a substrate in a vacuum chamber includes depositing a first layer of metal-containing compound on the substrate by MLD.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 19, 2014
    Assignee: The Ohio State University
    Inventors: Arthur J. Epstein, Chi-Yueh Kao, Yong G. Min
  • Patent number: 8478422
    Abstract: The present invention is generally directed to a method for regulating cellular and tissue physiology, a device for practicing the method, and a process for fabricating the device. In general the process comprises the steps of providing at least one patterned electrode, providing a least one cell, placing the at least one electrode in electrical communication with the at least one cell, and applying a voltage to the electrode thereby delivering an effective amount of a patterned electric field or current thus regulating the physiology and/or growth of the at least one cell.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: July 2, 2013
    Assignees: The Ohio State University, The Regents of the University of Michigan
    Inventors: Arthur J. Epstein, Stephen E. Feinberg, Derek J. Hansford, Yanyin Yang
  • Patent number: 8326389
    Abstract: A system for continuous in vivo biosensing of specific analyte molecule concentrations based on the dynamic optical properties of electronic polymers is disclosed. The biosensor system includes at least one implant member subcutaneously exposed to the interstitial fluid of the subject, and a reader member at least temporarily positioned over the implant member to probe it with light of specific wavelengths through the skin. The system has many potential applications, including the real-time monitoring of blood glucose levels in diabetics as a method to supplement or replace conventional capillary blood testing.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: December 4, 2012
    Assignee: The Ohio State University Research Foundation
    Inventors: Arthur J. Epstein, Louis R. Nemzer
  • Patent number: 8293140
    Abstract: Novel, simple methods are presented directed to the synthesis of aligned nanofibers of polyaniline and substituted derivatives on a substrate. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: October 23, 2012
    Assignee: The Ohio State University Research Foundation
    Inventors: Arthur J. Epstein, Nan-Rong Chiou, Ly James Lee, Chunmeng Lu
  • Publication number: 20120211702
    Abstract: The present invention relates generally to substituted polyaniline polymer/copolymer compositions, suitable slats thereof and uses therefore. In one embodiment, the present invention relates to conductive substituted polyaniline polymer/copolymer compositions, suitable slats thereof and uses therefore. In still another embodiment, the present invention relates to self-protonated substituted polyaniline polymer/copolymer compositions, suitable slats thereof and uses therefore. In yet another embodiment, the present invention relates to self-protonated sulfonic acid- or boric acid-substituted polyaniline polymer/copolymer compositions, suitable slats thereof and uses therefore. In still another embodiment, the one or more various polyaniline polymer/copolymer compositions of the present invention are both biodegradable and conducting polymer compositions.
    Type: Application
    Filed: August 2, 2010
    Publication date: August 23, 2012
    Applicant: THE OHIO STATE UNIVERSITY
    Inventors: Arthur J. Epstein, Yong Min, Jen-Chieh Wu
  • Publication number: 20120126920
    Abstract: An organic-based magnet is formed by molecular layer deposition (MLD) of a first compound and MLD of a second compound. The first or second compound containing a metal-containing compound. The first and second compounds being reactive with each other to form a first layer organic-based magnet. A laminate composite includes a first monolayer including a metal bonded to a magnet forming organic compound. A second monolayer may be in direct contact with the first monolayer. One of the first monolayer and the second monolayer having an induced magnetization when exposed to a magnetic field. A device includes the laminate composite and a nonmagnetic film thereon. A method of making an organic magnet on a substrate in a vacuum chamber includes depositing a first layer of metal-containing compound on the substrate by MLD.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 24, 2012
    Applicant: THE OHIO STATE UNIVERSITY
    Inventors: Arthur J. Epstein, Chi-Yueh Kao, Yong G. Min
  • Publication number: 20120035353
    Abstract: Novel, simple methods are presented directed to the synthesis of aligned nanofibers of polyaniline and substituted derivatives on a substrate. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Application
    Filed: October 17, 2011
    Publication date: February 9, 2012
    Inventors: Arthur J. Epstein, Nan-Rong Chiou, Ly James Lee, Chunmeng Lu
  • Patent number: 8038907
    Abstract: Novel, simple methods are presented directed to the synthesis of aligned nanofibers of polyaniline and substituted derivatives on a substrate. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: October 18, 2011
    Assignee: The Ohio State University Research Foundation
    Inventors: Arthur J. Epstein, Nan-Rong Chiou, Ly James Lee, Chunmeng Lu
  • Publication number: 20110229706
    Abstract: Novel, simple methods are presented directed to the synthesis of aligned nanofibers of polyaniline and substituted derivatives on a substrate. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Application
    Filed: April 2, 2007
    Publication date: September 22, 2011
    Inventors: Arthur J. Epstein, Nan-Rong Chiou, Ly James Lee, Chunmeng Lu
  • Publication number: 20100324383
    Abstract: A system for continuous in vivo biosensing of specific analyte molecule concentrations based on the dynamic optical properties of electronic polymers is disclosed. The biosensor system includes at least one implant member subcutaneously exposed to the interstitial fluid of the subject, and a reader member at least temporarily positioned over the implant member to probe it with light of specific wavelengths through the skin. The system has many potential applications, including the real-time monitoring of blood glucose levels in diabetics as a method to supplement or replace conventional capillary blood testing.
    Type: Application
    Filed: December 5, 2007
    Publication date: December 23, 2010
    Inventors: Arthur J. Epstein, Louis R. Nemzer
  • Publication number: 20100160999
    Abstract: The present invention is generally directed to a method for regulating cellular and tissue physiology, a device for practicing the method, and a process for fabricating the device. In general the process comprises the steps of providing at least one patterned electrode, providing a least one cell, placing the at least one electrode in electrical communication with the at least one cell, and applying a voltage to the electrode thereby delivering an effective amount of a patterned electric field or current thus regulating the physiology and/or growth of the at least one cell.
    Type: Application
    Filed: September 21, 2006
    Publication date: June 24, 2010
    Inventors: Arthur J Epstein, Stephen E. Feinberg, Derek J. Hansford, Yanyin Yang
  • Patent number: 7713446
    Abstract: Novel, simple methods are presented directed to the synthesis of nanofibers of polyaniline and substituted derivatives. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: May 11, 2010
    Assignee: The Ohio State Univeristy
    Inventors: Arthur J. Epstein, Nan-Rong Chiou
  • Publication number: 20080197326
    Abstract: Novel, simple methods are presented directed to the synthesis of nanofibers of polyaniline and substituted derivatives. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Application
    Filed: April 15, 2008
    Publication date: August 21, 2008
    Inventors: Arthur J. Epstein, Nan-Rong Chiou
  • Patent number: 7374703
    Abstract: Novel, simple methods are presented directed to the synthesis of nanofibers of polyaniline and substituted derivatives. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: May 20, 2008
    Assignee: The Ohio State University
    Inventors: Arthur J. Epstein, Nan-Rong Chiou
  • Patent number: 7075815
    Abstract: A spin driven resistor including a magnetic body whose resistance increases due to resonance when subjected to an externally applied magnetic field while in the presence of an externally applied electromagnetic field is presented. The spin driven resistor has applications in a variety of spintronic devices including read heads and detectors that are very fast and operate and low power. The spin driven resistor may also be used to modulate spin value, spin tunnel junction, spin-LED, and spin-transistor devices by exposing the device to an electromagnetic field and a magnetic field.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: July 11, 2006
    Assignee: The Ohio State University
    Inventor: Arthur J. Epstein
  • Patent number: 7071290
    Abstract: The invention relates to polymers and oligomers, methods of their synthesis, and electronic devices comprising them.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: July 4, 2006
    Assignee: The Ohio State University
    Inventors: Arthur J. Epstein, Daike Wang
  • Patent number: 6962757
    Abstract: In general terms, the present invention includes a light emitting polymeric material the light emitting polymeric material capable of producing electroluminescence upon being provided with a flow of electrons, the light emitting polymeric material comprising a plurality of polymeric chains comprising polymeric chains each having substituent moieties of sufficient number and size and extending from the polymeric chain and about a substantial portion of the circumference about the polymer chain so as to maintain the polymeric chains in a sufficiently deaggregated state (referred to herein as a “strapped” polymer), so as to substantially prevent the redshifting of the electroluminescence and the lowering of light emission efficiency of the electroluminescence.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: November 8, 2005
    Assignee: The Ohio State Universtiy Research Foundation
    Inventors: Arthur J. Epstein, Yunzhang Wang, Darren D. Gebler, Timothy M. Swager
  • Patent number: 6906166
    Abstract: The invention relates to polymers and oligomers, methods of their synthesis, and electronic devices comprising them.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: June 14, 2005
    Assignee: The Ohio State University
    Inventors: Arthur J. Epstein, Daike Wang
  • Patent number: 6872471
    Abstract: The present invention includes infrared emitting materials and infrared emitting devices. The present invention demonstrates 1.54 micron infrared PL and EL emission from an organic complex. This provides a very simple way to obtain a light source at 1.54 micron wavelength that may be both optically and electrically pumped.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: March 29, 2005
    Assignee: The Ohio State University Research Foundation
    Inventors: Arthur J. Epstein, Qianbing Zheng, Run G. Sun
  • Patent number: 6833283
    Abstract: The present invention includes methods for fabricating polymer light emitting devices by lamination. The invention also includes methods for fabricating electroluminescent polymer devices and electroluminescent polymer systems, and machines or instruments using those aspects of the invention.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: December 21, 2004
    Assignee: The Ohio State University
    Inventors: Arthur J. Epstein, Yunzhang Wang, Runguan Sun