Patents by Inventor Artur G. Olszak

Artur G. Olszak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8675205
    Abstract: The time delay (and therefore the OPD) between object and reference beams in an interferometer is manipulated by changing the spectral properties of the source. The spectral distribution is tuned to produce a modulation peak at a value of OPD equal to the optical distance between the object and reference arms of a Fizeau interferometer, thereby enabling the use of its common-axis configuration to carry out white-light measurements free of coherence noise. Unwanted interferences from other reflections in the optical path are also removed by illuminating the object with appropriate spectral characteristics. OPD scanning is implemented without mechanical means by altering the source spectrum over time so as to shift the peak location by a predetermined scanning step between acquisition frames. The invention and its advantages are applicable to optical coherence tomography as well as conventional white light interferometry.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: March 18, 2014
    Inventor: Artur G. Olszak
  • Publication number: 20130242312
    Abstract: The time delay (and therefore the OPD) between object and reference beams in an interferometer is manipulated by changing the spectral properties of the source. The spectral distribution is tuned to produce a modulation peak at a value of OPD equal to the optical distance between the object and reference arms of a Fizeau interferometer, thereby enabling the use of its common-axis configuration to carry out white-light measurements free of coherence noise. Unwanted interferences from other reflections in the optical path are also removed by illuminating the object with appropriate spectral characteristics. OPD scanning is implemented without mechanical means by altering the source spectrum over time so as to shift the peak location by a predetermined scanning step between acquisition frames. The invention and its advantages are applicable to optical coherence tomography as well as conventional white light interferometry.
    Type: Application
    Filed: March 29, 2013
    Publication date: September 19, 2013
    Inventor: ARTUR G. OLSZAK
  • Patent number: 8422026
    Abstract: The time delay (and therefore the OPD) between object and reference beams in an interferometer is manipulated by changing the spectral properties of the source. The spectral distribution is tuned to produce a modulation peak at a value of OPD equal to the optical distance between the object and reference arms of a Fizeau interferometer, thereby enabling the use of its common-axis configuration to carry out white-light measurements free of coherence noise. Unwanted interferences from other reflections in the optical path are also removed by illuminating the object with appropriate spectral characteristics. OPD scanning is implemented without mechanical means by altering the source spectrum over time so as to shift the peak location by a predetermined scanning step between acquisition frames. Finally, the spectrum is controlled on a pixel-by-pixel basis to create a virtual surface that matches the profile of a particular sample surface.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: April 16, 2013
    Inventor: Artur G. Olszak
  • Patent number: 7864369
    Abstract: An imaging apparatus consists of multiple miniaturized microscopes arranged into an array capable of simultaneously imaging respective portions of an object. A continuous linear translation approach is followed to scan the object and generate multiple image swaths of the object. In order to improve the quality of the composite image produced by concatenation of the image swaths, the performance of each microscope is normalized to the same base reference for each relevant optical-system property. Correction factors are developed through calibration to equalize the spectral response measured at each detector, to similarly balance the gains and offsets of the detector/light-source combinations associated with the various objectives, to correct for geometric misalignments between microscopes, and to correct optical and chromatic aberrations in each objective.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: January 4, 2011
    Assignee: Dmetrix, Inc.
    Inventors: Artur G. Olszak, Chen Liang
  • Patent number: 7864379
    Abstract: An array microscope scans a slide in rapid sequence at different wavelengths to record multiple spectral images of the sample. Full spatial resolution of the image sensor is realized at each color because pixels are not shared between spectral bands. The object and detector are placed at conjugate distances selected to produce substantially equal magnification with minimum chromatic aberration at all wavelengths to ensure registration of all images. Spectral analysis is carried out by combining the images captured at each wavelength. The greater-than-RGB spectral resolution provided by the combination of images enables the isolation and display of the effects produced by the contemporaneous use of more than two stains on a tissue for improved pathological analysis.
    Type: Grant
    Filed: December 23, 2006
    Date of Patent: January 4, 2011
    Assignee: DMetrix, Inc.
    Inventors: Artur G. Olszak, Chen Liang
  • Patent number: 7864380
    Abstract: In a scanning microscope, slides are fed automatically from a magazine to the imaging system. Each slide is labeled in some fashion with information for selecting the appropriate modality of operation of the scanner for that slide and the modality is implemented automatically. The information is preferably tied to and defined by a laboratory information system (LIS). For example, the instructions may regard the type of microscopy (i.e., trans- or epi-illumination), multi-spectral imaging with particular spectral bands combined with a particular set of z-positions, alternative filters, settings for the numerical aperture of the condenser, alternative detector operation for different resolutions, and alternative post-scan analyses of the data, as deemed optimal for the scan. The label may also contain the slide's identity, a pathologist's name, desired post-scan handling protocol, etc. The preferred array microscope to carry out the invention is also described.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: January 4, 2011
    Assignee: DMetrix, Inc.
    Inventors: Michael R. Descour, Artur G. Olszak, Andrew Lowe
  • Publication number: 20100315650
    Abstract: The time delay (and therefore the OPD) between object and reference beams in an interferometer is manipulated by changing the spectral properties of the source. The spectral distribution is tuned to produce a modulation peak at a value of OPD equal to the optical distance between the object and reference arms of a Fizeau interferometer, thereby enabling the use of its common-axis configuration to carry out white-light measurements free of coherence noise. Unwanted interferences from other reflections in the optical path are also removed by illuminating the object with appropriate spectral characteristics. OPD scanning is implemented without mechanical means by altering the source spectrum over time so as to shift the peak location by a predetermined scanning step between acquisition frames. Finally, the spectrum is controlled on a pixel-by-pixel basis to create a virtual surface that matches the profile of a particular sample surface.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 16, 2010
    Inventor: ARTUR G. OLSZAK
  • Patent number: 7755841
    Abstract: A liquid lens includes a segmented electrode that allows the simultaneous application of different potentials across the lens's meniscus to obtain a predetermined aberration correction condition and to adjust focal length as necessary to conform to the topography of the object being scanned. The lens also includes a gas plenum interfacing with one of the liquids of the lens to allow for volume changes in the lens cell due to temperature variations. This combination of features produces a liquid-lens cell capable of maintaining substantially constant transverse magnification and diffraction-limited image quality over a useful range of focal length. As such, the lens is particularly suitable for incorporation in an array of micro-objectives used in a scanning microscope.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: July 13, 2010
    Assignee: Dmetrix, Inc.
    Inventors: Todd R. Christenson, Michael R. Descour, Chen Liang, Artur G. Olszak
  • Publication number: 20090174936
    Abstract: A microscope array for simultaneously imaging multiple objects. A preferred embodiment of a method according to the invention includes arranging the objects into an array, providing a microscope array having a plurality of imaging elements with respective fields of view arranged into a corresponding array such that the imaging elements are optically aligned respectively with the objects, and simultaneously imaging the objects with the microscope array to produce respective images of the objects. The invention also provides for scanning while imaging, and for stepping and repeating the imaging process.
    Type: Application
    Filed: February 4, 2009
    Publication date: July 9, 2009
    Applicant: DMetrix, Inc.
    Inventor: ARTUR G. OLSZAK
  • Patent number: 7482566
    Abstract: An equalization system for a multi-axis imaging system. A plurality of light detectors are arranged in a detector array and a plurality of light sources corresponding to detectors in the detector array are arranged in a source array so that light radiated from a point on the object illuminated by a given source is detected by a corresponding detector. A signal conditioning system is provided for receiving output signals from the plurality of detectors. An equalizer system, adapted to interact with said signal conditioning system, is provided for equalizing the output values for given amounts of optical power illuminating the respective fields of view of the imaging elements.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: January 27, 2009
    Assignee: DMetrix, Inc.
    Inventor: Artur G. Olszak
  • Publication number: 20080297911
    Abstract: A liquid lens includes a segmented electrode that allows the simultaneous application of different potentials across the lens's meniscus to obtain a predetermined aberration correction condition and to adjust focal length as necessary to conform to the topography of the object being scanned. The lens also includes a gas plenum interfacing with one of the liquids of the lens to allow for volume changes in the lens cell due to temperature variations. This combination of features produces a liquid-lens cell capable of maintaining substantially constant transverse magnification and diffraction-limited image quality over a useful range of focal length. As such, the lens is particularly suitable for incorporation in an array of micro-objectives used in a scanning microscope.
    Type: Application
    Filed: January 30, 2008
    Publication date: December 4, 2008
    Applicant: DMetrix, Inc.
    Inventors: Todd C. Christenson, Michael R. Descour, Chen Liang, Artur G. Olszak
  • Patent number: 7388714
    Abstract: A multiple-axis imaging system having optical elements whose optimal image positions can be individually adjusted, comprising a plurality of optical array elements having respective optical axes and being individually disposed with respect to one another to image respective sections of an object; and a plurality of image position shifting devices corresponding to respective optical elements for separately establishing the image positions for a plurality of the optical array elements. The multi-axis imaging system preferably comprises a miniaturized microscope array. The shifting devices may comprise wavelength filters or optical-path-length-altering elements, such as a plane parallel plates. The devices may also comprise a pair of wedges that adjustably overlap one another, the wedges having apexes that point in opposite directions and respective corresponding planar surfaces that are parallel to one another.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: June 17, 2008
    Assignee: DMetrix, inc.
    Inventors: Chen Liang, Artur G. Olszak
  • Patent number: 7330574
    Abstract: The sample stage of an array microscope is tilted in the scanning direction such that the best-focus plane of the array microscope intersects the surface of the sample during the scan. As a result of the tilt, the distance from the sample surface of each miniaturized microscope spanning the array varies from point to point on the surface. Accordingly, the best focal distance for each such point on the sample surface is identified by tracking the quality of its focus as the sample surface travels across the rows of microscopes in the array. Best focus may be detected using any known technique, such as by measuring spatial frequency content and recording the scan position corresponding to maximum mid-range frequency content. This information is used to develop a best-focus axial-position map for use while performing a subsequent measurement scan.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: February 12, 2008
    Assignee: Ometrix, Inc.
    Inventor: Artur G. Olszak
  • Patent number: 7193775
    Abstract: An epi-illumination system for an array microscope. For Kohler illumination, illumination light sources are placed, actually or virtually, at the pupils of respective individual microscope elements of an array microscope. In one Kohler illumination embodiment, the light source is a point source comprising the tip of an optical fiber placed on the optical axis at the pupil of its corresponding microscope element. In another Kohler illumination embodiment, the illumination light is provided by a reflective boundary placed on the optical axis of a corresponding microscope element. For critical illumination the light sources are placed at locations conjugate with their respective object planes so as to image the light sources thereon.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: March 20, 2007
    Assignee: DMetrix, Inc.
    Inventors: Artur G. Olszak, Chen Liang
  • Patent number: 7130115
    Abstract: A multi-mode scanning imaging system. The system includes a plurality of sets of optical elements and a scanning mechanism. Each set is disposed with respect to a corresponding image plane and configured to image respective portions of an object. A scanning mechanism produces relative translation between the sets and the object so as to scan the object. Sets of image sensors corresponding to the sets of optical elements are adapted to capture image data representative of the respective portions of the object. A mode implementation system coordinates the image data according to one or more desired modes of operation of the imaging system.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: October 31, 2006
    Assignee: Dhetrix, Inc.
    Inventors: Artur G. Olszak, Chen Liang, Michael R. Descour
  • Patent number: 7034317
    Abstract: A method and system for limiting the amount of image data to be captured by a scanning imaging array. A low-resolution preliminary image of an object is acquired. Data from the preliminary image is used to identify features of interest in the object or to perform other image analyses that do not require a high-resolution image. Thereafter a scanning imaging array may be used to acquire a high-resolution image of only limited areas of the object including the features of interest or of only limited object characteristics. In one embodiment, the preliminary image is acquired using a separate, linear scanning array extending laterally with respect to the scan direction of the scanning imaging array. In another embodiment, an under sampled portion of the imaging elements of the scanning imaging array, or detectors thereof, is used to pre-scan the object to produce the low-resolution preliminary image.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: April 25, 2006
    Assignee: DMetrix, Inc.
    Inventors: Artur G. Olszak, Chen Liang
  • Patent number: 7019895
    Abstract: A microscope stage providing improved optical performance. A carriage for supporting an object has a transparent portion for receiving the object and permitting trans-illumination thereof. A base supports the carriage, at least a portion of the base comprising a transparent material to permit illumination of the specimen there through. Bearings disposed between the base and the carriage support the carriage on the base and permit relative movement thereof. The base has a dovetail cross sectional shape with bearings between the top of the carriage and the base and between the sidewalls of the carriage and the base. A cover is coupled to the carriage so as to transfer force thereto without imparting a significant movement thereto. A mechanism connected to the cover for moving the carriage relative to the base is disposed at a position offset from the axis of lateral symmetry of the carriage and base.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: March 28, 2006
    Assignee: DMetrix, Inc.
    Inventors: William C. Russum, Artur G. Olszak
  • Patent number: 6987259
    Abstract: An imaging system with an integrated source and detector array. A plurality of light detectors are arranged in a detector array and a plurality of light sources corresponding to detectors in the detector array are arranged in a source array in an epi-illumination system so that light radiated from a point on the object illuminated by a given source is detected by a corresponding detector. An optical system is disposed with respect to the source array and the detector array so as to illuminate an object with light from the source array and image the object on the detector array. Ordinarily, the sources and detectors are coplanar and, preferably, are fabricated or at least mounted on the same substrate. One or more sources in the source array may have a corresponding plurality of detectors, and one or more detectors in the detector array may have a corresponding plurality of sources.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: January 17, 2006
    Assignee: DMetrix, Inc.
    Inventors: Artur G. Olszak, Chen Liang
  • Patent number: 6958464
    Abstract: An imaging system with an integrated source and detector array. A plurality of light detectors are arranged in an array and a corresponding plurality of light sources are arranged in an array in an epi-illumination system so that light radiated from a point on the object illuminated by a given source is detected by a corresponding detector. An optical system is disposed so as to illuminate an object with light from the source array and image the object on the detector array. Ordinarily, the sources and detectors are coplanar and, preferably, are fabricated or at least mounted on the same substrate. In one embodiment the Airy pattern of the point response of the optical system encompasses both a detector and corresponding light sources. In another embodiment, the optical pathway is split by a diffractive element to produce conjugate points corresponding to light sources and their respective detectors. In a further embodiment, the pathway is split by a Wollaston prism.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: October 25, 2005
    Assignee: DMetrix, Inc.
    Inventors: Artur G. Olszak, Chen Liang
  • Patent number: 6842290
    Abstract: A multiple-axis imaging system having individually-adjustable optical elements and a method for individually adjusting optical elements of the system. The system comprises a plurality of optical elements having respective optical axes and being individually disposed with respect to one another to image respective sections of an object, and a plurality of individually-operable positioning devices corresponding to respective optical elements for positioning the optical elements with respect to their respective optical axes. The positioning devices are specifically adapted to adjust the axial position, lateral position and angular orientation of the optical elements with respect to their respective optical axes. The system is particularly adapted for use as a microscope array, and the positioning devices may be micro-actuators.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: January 11, 2005
    Assignee: Dmetrix, Inc.
    Inventors: Chen Liang, Artur G. Olszak, James Goodall