Patents by Inventor Arun S.

Arun S. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12196782
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner planar spring elements along their length. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: January 14, 2025
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Patent number: 12196781
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner spring elements along their lengths. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: January 14, 2025
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Patent number: 12146898
    Abstract: Probe structures having multiple beams are joined at their ends with at least one functioning as a current carrying beam (i.e. an electrical beam) and at least one functioning as a structural beam (i.e. non-current carrying beam) that conveys desired mechanical or structural parameters for the probe such as spring force, scrubbing, over travel, operational stability and repeatability, and the like. The current carrying beam provides little with regard to mechanical properties, and the structural beam is separated from the current carrying beam along a majority of its length and does not pass current between the probe ends due to its dielectric nature or the presence of at least one dielectric barrier located at an end or along its length.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: November 19, 2024
    Assignee: Microfabrica Inc.
    Inventor: Arun S. Veeramani
  • Publication number: 20240354209
    Abstract: An embodiment of an electronic apparatus may include one or more substrates, and logic coupled to the one or more substrates, the logic to control access to a persistent storage media based on a block and sub-block access structure, store a data structure in the persistent storage media to track read fails at a sub-block granularity for a word-line for every block, and update the data structure in response to a read fail on a block to indicate a failed sub-block that corresponds to the read fail for a word-line for the block. Other embodiments are disclosed and claimed.
    Type: Application
    Filed: July 2, 2024
    Publication date: October 24, 2024
    Applicant: Intel Corporation
    Inventors: Naveen Vittal Prabhu, Aliasgar Madraswala, Rohit Shenoy, Shankar Natarajan, Arun S. Athreya
  • Patent number: 12099420
    Abstract: An embodiment of an electronic apparatus may include one or more substrates, and logic coupled to the one or more substrates, the logic to control access to a persistent storage media based on a block and sub-block access structure, store a data structure in the persistent storage media to track read fails at a sub-block granularity for a word-line for every block, and update the data structure in response to a read fail on a block to indicate a failed sub-block that corresponds to the read fail for a word-line for the block. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: September 24, 2024
    Assignee: Intel Corporation
    Inventors: Naveen Vittal Prabhu, Aliasgar Madraswala, Rohit Shenoy, Shankar Natarajan, Arun S. Athreya
  • Patent number: 12078657
    Abstract: Embodiments are directed to probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays wherein the probes include at least one flat extension spring segment and wherein in some embodiments the probes also provide: (1) narrowed channel passage segments (e.g. by increasing width of plunger elements or by decreasing channel widths) along portions of channel lengths (e.g. not entire channel lengths) to enhance stability or pointing accuracy while still allowing for assembled formation of movable probe elements, and/or (2) ratcheting elements on probe arms and/or frame elements to allow permanent or semi-permanent transition from a build state or initial state to a working state or pre-biased state.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: September 3, 2024
    Assignee: Microfabrica Inc.
    Inventors: Ming Ting Wu, Arun S. Veeramani
  • Patent number: 12066462
    Abstract: Probes for contacting electronic components include a plurality of compliant modules stacked in a serial configuration, which are supported by an exoskeleton or an endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Other probes are formed from single compliant modules or pairs of back-to-back modules that may share a common base. Module bases may include configurations that allow for one or both lateral alignment and longitudinal alignment of probes relative to array structures (e.g., array substrates, guide plates) or other modules they contact or to which they adhere.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: August 20, 2024
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Dennis R. Smalley
  • Publication number: 20240220133
    Abstract: Embodiments herein provide a wireless network (1000) for handling a File Transfer Protocol (FTP) server deployment as part of a Distributed Unit (DU) network function of the wireless network (1000). The wireless network (1000) includes a RU manager container (140) hosting a DU application and application container sensitive information at a first directory. Further, the system includes a sidecar container (160) that hosts the FTP server, a RU software (SW) image of an RU and sidecar container credentials at a second directory. The sidecar container (160) sends sidecar container credentials to the RU (150) in the wireless network to download the RU software image using a file transfer protocol (FTP) service (or the FTP session). The RU (150) establishes the FTP session with the sidecar container (160) using the sidecar container credentials and downloads the RU software image from the sidecar container using the FTP service.
    Type: Application
    Filed: February 8, 2023
    Publication date: July 4, 2024
    Inventors: Naga Krishna Prasad Jampala, Mahesh Sivapuram, Arun S Menon
  • Patent number: 11999016
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or methods of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: June 4, 2024
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Publication number: 20240103042
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 17, 2022
    Publication date: March 28, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094255
    Abstract: Probes for contacting electronic components include a plurality of compliant modules stacked in a serial configuration, which are supported by an exoskeleton or an endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Other probes are formed from single compliant modules or pairs of back-to-back modules that may share a common base. Module bases may include configurations that allow for one or both lateral alignment and longitudinal alignment of probes relative to array structures (e.g., array substrates, guide plates) or other modules they contact or to which they adhere.
    Type: Application
    Filed: October 21, 2021
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Dennis R. Smalley
  • Publication number: 20240094257
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner planar spring elements along their length. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094256
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner spring elements along their lengths. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094249
    Abstract: Embodiments are directed to probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays wherein the probes include at least one flat extension spring segment and wherein in some embodiments the probes also provide: (1) narrowed channel passage segments (e.g. by increasing width of plunger elements or by decreasing channel widths) along portions of channel lengths (e.g. not entire channel lengths) to enhance stability or pointing accuracy while still allowing for assembled formation of movable probe elements, and/or (2) ratcheting elements on probe arms and/or frame elements to allow permanent or semi-permanent transition from a build state or initial state to a working state or pre-biased state.
    Type: Application
    Filed: June 30, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Ming Ting Wu, Arun S. Veeramani
  • Publication number: 20240094259
    Abstract: Probe structures having multiple beams are joined at their ends with at least one functioning as a current carrying beam (i.e. an electrical beam) and at least one functioning as a structural beam (i.e. non-current carrying beam) that conveys desired mechanical or structural parameters for the probe such as spring force, scrubbing, over travel, operational stability and repeatability, and the like. The current carrying beam provides little with regard to mechanical properties, and the structural beam is separated from the current carrying beam along a majority of its length and does not pass current between the probe ends due to its dielectric nature or the presence of at least one dielectric barrier located at an end or along its length.
    Type: Application
    Filed: August 15, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventor: Arun S. Veeramani
  • Publication number: 20240094252
    Abstract: Dual shield probes are provided having one or more of a plurality of different features including: discontinuous dielectric spacers, fixed nodes, sliding nodes, shield nodes, bridges, stops, interlocked dielectric and conductive elements, along with methods of using and making such probes.
    Type: Application
    Filed: October 4, 2021
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Jia Li, Arun S. Veeramani, Stefano Felici, Dennis R. Smalley
  • Publication number: 20240094258
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner planar spring elements along their length. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240044992
    Abstract: A system includes a battery pack module and a control module. The battery pack module is configured to be implemented in a battery pack. The battery pack module includes cells and one or more force sensors configured to generate at least one force signal indicative of force on the cells within the battery pack module. The control module is configured to: receive the at least one force signal; based on the at least one force signal, detect a state of the cells; and based on the detected state of the cells, at least one of i) modify the state of the cells, ii) generate an alert message, and iii) perform a mitigation operation to address a detected abnormality of the cells.
    Type: Application
    Filed: August 3, 2022
    Publication date: February 8, 2024
    Inventors: Jeremie DERNOTTE, Arun S. SOLOMON, Scott E. PARRISH, Wei ZENG
  • Publication number: 20230358785
    Abstract: Probe array for contacting electronic components includes a plurality of probes for making contact between two electronic circuit elements and an array plate mounting and retention configuration. The probes may comprise lower retention features that protrudes from a probe body with a size and configuration that limits the longitudinal extent to which the probes can be inserted into plate probe holes of an array plate and an upper retention feature having a lateral configuration that is sized to pass through the extension provided by the side wall feature of the plate probe hole when aligned and after longitudinally locating the upper retention feature above the extension, the retention feature undergoes displacement relative to the upper plate probe hole such that the upper retention feature can no longer longitudinally pass through the extension of the upper plate probe hole.
    Type: Application
    Filed: April 4, 2023
    Publication date: November 9, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20230349947
    Abstract: Probe array for contacting electronic components includes a plurality of probes for making contact between two electronic circuit elements and an array plate mounting and retention configuration. The probes may comprise lower retention features that protrudes from a probe body with a size and configuration that limits the longitudinal extent to which the probes can be inserted into plate probe holes of a array plate and an upper retention feature comprising at least one tab-like feature extending laterally from the body of the probe at a level above and longitudinally spaced from the lower retention feature; and wherein after longitudinally locating the upper retention feature above the plate probe hole in the array plate, the upper retention feature undergoes lateral displacement such that the upper retention feature can no longer longitudinally pass through the plate probe hole in the array plate.
    Type: Application
    Filed: April 4, 2023
    Publication date: November 2, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley