Patents by Inventor Arun S. Veeramani

Arun S. Veeramani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103042
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 17, 2022
    Publication date: March 28, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094259
    Abstract: Probe structures having multiple beams are joined at their ends with at least one functioning as a current carrying beam (i.e. an electrical beam) and at least one functioning as a structural beam (i.e. non-current carrying beam) that conveys desired mechanical or structural parameters for the probe such as spring force, scrubbing, over travel, operational stability and repeatability, and the like. The current carrying beam provides little with regard to mechanical properties, and the structural beam is separated from the current carrying beam along a majority of its length and does not pass current between the probe ends due to its dielectric nature or the presence of at least one dielectric barrier located at an end or along its length.
    Type: Application
    Filed: August 15, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventor: Arun S. Veeramani
  • Publication number: 20240094258
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner planar spring elements along their length. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094255
    Abstract: Probes for contacting electronic components include a plurality of compliant modules stacked in a serial configuration, which are supported by an exoskeleton or an endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Other probes are formed from single compliant modules or pairs of back-to-back modules that may share a common base. Module bases may include configurations that allow for one or both lateral alignment and longitudinal alignment of probes relative to array structures (e.g., array substrates, guide plates) or other modules they contact or to which they adhere.
    Type: Application
    Filed: October 21, 2021
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Dennis R. Smalley
  • Publication number: 20240094249
    Abstract: Embodiments are directed to probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays wherein the probes include at least one flat extension spring segment and wherein in some embodiments the probes also provide: (1) narrowed channel passage segments (e.g. by increasing width of plunger elements or by decreasing channel widths) along portions of channel lengths (e.g. not entire channel lengths) to enhance stability or pointing accuracy while still allowing for assembled formation of movable probe elements, and/or (2) ratcheting elements on probe arms and/or frame elements to allow permanent or semi-permanent transition from a build state or initial state to a working state or pre-biased state.
    Type: Application
    Filed: June 30, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Ming Ting Wu, Arun S. Veeramani
  • Publication number: 20240094256
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner spring elements along their lengths. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094257
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner planar spring elements along their length. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094252
    Abstract: Dual shield probes are provided having one or more of a plurality of different features including: discontinuous dielectric spacers, fixed nodes, sliding nodes, shield nodes, bridges, stops, interlocked dielectric and conductive elements, along with methods of using and making such probes.
    Type: Application
    Filed: October 4, 2021
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Jia Li, Arun S. Veeramani, Stefano Felici, Dennis R. Smalley
  • Publication number: 20230358785
    Abstract: Probe array for contacting electronic components includes a plurality of probes for making contact between two electronic circuit elements and an array plate mounting and retention configuration. The probes may comprise lower retention features that protrudes from a probe body with a size and configuration that limits the longitudinal extent to which the probes can be inserted into plate probe holes of an array plate and an upper retention feature having a lateral configuration that is sized to pass through the extension provided by the side wall feature of the plate probe hole when aligned and after longitudinally locating the upper retention feature above the extension, the retention feature undergoes displacement relative to the upper plate probe hole such that the upper retention feature can no longer longitudinally pass through the extension of the upper plate probe hole.
    Type: Application
    Filed: April 4, 2023
    Publication date: November 9, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20230349947
    Abstract: Probe array for contacting electronic components includes a plurality of probes for making contact between two electronic circuit elements and an array plate mounting and retention configuration. The probes may comprise lower retention features that protrudes from a probe body with a size and configuration that limits the longitudinal extent to which the probes can be inserted into plate probe holes of a array plate and an upper retention feature comprising at least one tab-like feature extending laterally from the body of the probe at a level above and longitudinally spaced from the lower retention feature; and wherein after longitudinally locating the upper retention feature above the plate probe hole in the array plate, the upper retention feature undergoes lateral displacement such that the upper retention feature can no longer longitudinally pass through the plate probe hole in the array plate.
    Type: Application
    Filed: April 4, 2023
    Publication date: November 2, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20230324435
    Abstract: Pin probes and pin probe arrays are provided that allow electric contact to be made with selected electronic circuit components. Some embodiments include one or more compliant pin elements located within a sheath. Some embodiments include pin probes that include locking or latching elements that may be used to fix pin portions of probes into sheaths. Some embodiments provide for fabrication of probes using multi-layer electrochemical fabrication methods.
    Type: Application
    Filed: April 12, 2023
    Publication date: October 12, 2023
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Uri Frodis, Heath A. Jensen
  • Publication number: 20230314474
    Abstract: A method of forming a probe, comprises providing a first and a second probe modules, having respective compliant element functionally joining respective probes arm that directly or indirectly holds a first and a second tips and forming the probe by laterally and longitudinally aligning the first and second probe modules with their respective tips pointing away from each other.
    Type: Application
    Filed: April 4, 2023
    Publication date: October 5, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20230314482
    Abstract: Probe array for contacting electronic components includes a plurality of probes for making contact between two electronic circuit elements and a dual array plate mounting and retention configuration. The probes may comprise one or more mounting features that extend laterally from a body portion of the probe and the lower and upper array plates, in combination, capture: (1) at least one of the mounting features to inhibit excessive downward vertical movement of the probe body relative to the array plates, (2) at least one of the mounting features to inhibit excessive upward vertical movement of the probe body relative to the array plates, and (3) at least one of the mounting features to inhibit excessive lateral movement of the probe relative to the array plates, and wherein the at least one lower and upper plates longitudinally contact each other in a stacked assembly.
    Type: Application
    Filed: April 4, 2023
    Publication date: October 5, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Patent number: 11761982
    Abstract: Probes for contacting electronic components include a plurality of compliant modules stacked in a serial configuration, which are supported by an exoskeleton or an endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Other probes are formed from single compliant modules or pairs of back-to-back modules that may share a common base. Module bases may include configurations that allow for one or both lateral alignment and longitudinal alignment of probes relative to array structures (e.g., array substrates, guide plates) or other modules they contact or to which they adhere.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: September 19, 2023
    Assignee: Microfabrica Inc.
    Inventor: Arun S. Veeramani
  • Publication number: 20230243871
    Abstract: Probe array for contacting electronic components includes a plurality of probes for making contact between two electronic circuit elements and an array plate mounting and retention configuration. The probes may comprise lower retention features that protrudes from a probe body with a size and configuration that limits the longitudinal extent to which the probes can be inserted into plate probe holes of an array plate and an upper retention feature comprising at least one laterally compressible spring element at a level above the lower retention feature that, in combination with the probe body, can be made to achieve a lateral configuration that is sized to pass through the hole and thereafter elastically return to a configuration that is incapable of passing through the hole so as to retain the probe and the array plate together.
    Type: Application
    Filed: April 4, 2023
    Publication date: August 3, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20230243870
    Abstract: Probe array for contacting electronic components includes a plurality of probes for making contact between two electronic circuit elements and a dual array plate mounting and retention configuration. The probes may comprise lower retention features that protrudes from a probe body with a size and configuration that limits the longitudinal extent to which the probes can be inserted into plate probe holes in the lower array plate and an upper retention feature undergoing lateral displacement relative to the upper plate probe hole such that it can no longer longitudinally pass through the extension of the upper plate probe hole in the upper array plate.
    Type: Application
    Filed: April 4, 2023
    Publication date: August 3, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20230243872
    Abstract: Probe for making contact between two electronic circuit elements comprises a feature selected from the group consisting of: (A) at least one first tip and second tip arm supporting a shunting element that makes an electrical connection to at least one standoff while shunting current flow away from a spring element of the probe that joins a respective standoff and supports the respective tip arm, and (B) both of the first tip arm and the second tip arm support a respective shunting element that makes an electrical connection to the at least one respective standoff while shunting current flow away from a respective spring element that joins the respective standoff and supports the respective tip arm.
    Type: Application
    Filed: April 4, 2023
    Publication date: August 3, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20230201968
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or methods of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Application
    Filed: April 18, 2022
    Publication date: June 29, 2023
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Patent number: 10939934
    Abstract: The present disclosure relates generally to the field of tissue removal and more particularly to methods and devices for use in medical applications involving selective tissue removal. One exemplary method includes the steps of providing a tissue cutting instrument capable of distinguishing between target tissue to be removed and non-target tissue, urging the instrument against the target tissue and the non-target tissue, and allowing the instrument to cut the target tissue while automatically avoiding cutting of non-target tissue. Various tools for carrying out this method are also described.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: March 9, 2021
    Assignee: Microfabrica Inc.
    Inventors: Michael S. Lockard, Uri Frodis, Adam L. Cohen, Richard T. Chen, Gregory P. Schmitz, Eric C. Miller, Ming Ting Wu, Arun S. Veeramani, Juan Diego Perea
  • Patent number: 10069230
    Abstract: Embodiments are directed to board (e.g. PCB) mountable connectors for small gauge ribbon cables having a plurality of 28-40 AWG wires wherein the connectors are fabricated from a plurality of adhered layers comprising at least on metal.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: September 4, 2018
    Assignee: Microfabrica Inc.
    Inventor: Arun S. Veeramani