Patents by Inventor Ashish Agrawal

Ashish Agrawal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11462568
    Abstract: Embodiments herein describe techniques for a semiconductor device including a first transistor above a substrate, an insulator layer above the first transistor, and a second transistor above the insulator layer. The first transistor includes a first channel layer above the substrate, and a first gate electrode above the first channel layer. The insulator layer is next to a first source electrode of the first transistor above the first channel layer, next to a first drain electrode of the first transistor above the first channel layer, and above the first gate electrode. The second transistor includes a second channel layer above the insulator layer, and a second gate electrode separated from the second channel layer by a gate dielectric layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: October 4, 2022
    Assignee: Intel Corporation
    Inventors: Aaron Lilak, Justin Weber, Harold Kennel, Willy Rachmady, Gilbert Dewey, Van H. Le, Abhishek Sharma, Patrick Morrow, Ashish Agrawal
  • Patent number: 11450527
    Abstract: An apparatus including a transistor device including a channel including germanium disposed on a substrate; a buffer layer disposed on the substrate between the channel and the substrate, wherein the buffer layer includes silicon germanium; and a seed layer disposed on the substrate between the buffer layer and the substrate, wherein the seed layer includes germanium. A method including forming seed layer on a silicon substrate, wherein the seed layer includes germanium; forming a buffer layer on the seed layer, wherein the buffer layer includes silicon germanium; and forming a transistor device including a channel on the buffer layer.
    Type: Grant
    Filed: July 2, 2016
    Date of Patent: September 20, 2022
    Assignee: Intel Corporation
    Inventors: Van H. Le, Benjamin Chu-Kung, Willy Rachmady, Marc C. French, Seung Hoon Sung, Jack T. Kavalieros, Matthew V. Metz, Ashish Agrawal
  • Patent number: 11450739
    Abstract: A semiconductor structure has a substrate including silicon and a layer of relaxed buffer material on the substrate with a thickness no greater than 300 nm. The buffer material comprises silicon and germanium with a germanium concentration from 20 to 45 atomic percent. A source and a drain are on top of the buffer material. A body extends between the source and drain, where the body is monocrystalline semiconductor material comprising silicon and germanium with a germanium concentration of at least 30 atomic percent. A gate structure is wrapped around the body.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: September 20, 2022
    Assignee: Intel Corporation
    Inventors: Glenn Glass, Anand Murthy, Cory Bomberger, Tahir Ghani, Jack Kavalieros, Siddharth Chouksey, Seung Hoon Sung, Biswajeet Guha, Ashish Agrawal
  • Publication number: 20220294715
    Abstract: A computing device receives one or more network communication anomaly conditions that indicate abnormal network communication traffic for a class of devices associated with the computing device; monitors network communication data of the computing device; determines whether the network communication data of the computing device satisfies the one or more network communication anomaly conditions; and responsive to determining that the network communication data of the computing device satisfies the one or more network communication anomaly conditions, performs an anomaly detection operation for the computing device.
    Type: Application
    Filed: March 9, 2021
    Publication date: September 15, 2022
    Inventors: Ashish Agrawal, Pedro Leonardo
  • Patent number: 11437472
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having germanium-based channels are described. In an example, an integrated circuit structure includes a fin having a lower silicon portion, an intermediate germanium portion on the lower silicon portion, and a silicon germanium portion on the intermediate germanium portion. An isolation structure is along sidewalls of the lower silicon portion of the fin. A gate stack is over a top of and along sidewalls of an upper portion of the fin and on a top surface of the isolation structure. A first source or drain structure is at a first side of the gate stack. A second source or drain structure is at a second side of the gate stack.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: September 6, 2022
    Assignee: Intel Corporation
    Inventors: Siddharth Chouksey, Glenn Glass, Anand Murthy, Harold Kennel, Jack T. Kavalieros, Tahir Ghani, Ashish Agrawal, Seung Hoon Sung
  • Publication number: 20220278227
    Abstract: Tunneling Field Effect Transistors (TFETs) are promising devices in that they promise significant performance increase and energy consumption decrease due to a steeper subthreshold slope (for example, smaller sub-threshold swing). In various embodiments, vertical fin-based TFETs can be fabricated in trenches, for example, silicon trenches. In another embodiment, vertical TFETs can be used on different material systems acting as a substrate and/or trenches (for example, Si, Ge, III-V semiconductors, GaN, and the like). In one embodiment, the tunneling direction in the channel of the vertical TFET can be perpendicular to the Si substrates. In one embodiment, this can be different than the tunneling direction in the channel of lateral TFETs.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Jack Kavalieros, Ian Young, Matthew Metz, Willy Rachmady, Uygar Avci, Ashish Agrawal, Benjamin Chu-Kung
  • Patent number: 11425075
    Abstract: Disclosed are various embodiments for integrating client applications with hosted applications. For example, an email can be received from an email client. It can then be determined whether the email is associated with a hosted application. In response to a determination that the email is associated with the hosted application, a request can be made to a connector for a calendar object. The calendar object is then received and returned to the email client.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: August 23, 2022
    Assignee: VMWARE, INC.
    Inventors: Rohit Pradeep Shetty, Shree Harsha Shedigumme, Sudharsan Thumatti Sathiamoorthy, Sharun Varghese Samuel, Ashish Agrawal
  • Patent number: 11416909
    Abstract: A shared “universal” virtual shopping cart (“the cart”) may be provided by a host to enable information sharing between multiple disparate electronic marketplaces provided by various merchants. The host may obtain user information via the cart to improve interactions with a user. The host may recommend an item to the user that is offered at a lower price and related to an item retained in the user's cart. The host may also recommend items based on a user's purchase history, such as complementary items (e.g., up-sell items) and items other users may recommend. In some aspects, the host may compile best selling lists based on data from multiple electronic marketplaces. The host may also perform user specific operations such as indicate an item in a cart is a duplicate of a previous purchase and monitor a price and/or available quantities of an item in the cart.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: August 16, 2022
    Assignee: Amazon Technologies, Inc.
    Inventors: Amit Bhosle, Ashish Agrawal
  • Patent number: 11404562
    Abstract: Disclosed herein are tunneling field effect transistors (TFETs), and related methods and computing devices. In some embodiments, a TFET may include: a first source/drain material having a p-type conductivity; a second source/drain material having an n-type conductivity; a channel material at least partially between the first source/drain material and the second source/drain material, wherein the channel material has a first side face and a second side face opposite the first side face; and a gate above the channel material, on the first side face, and on the second side face.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: August 2, 2022
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Willy Rachmady, Matthew V. Metz, Ashish Agrawal, Benjamin Chu-Kung, Uygar E. Avci, Jack T. Kavalieros, Ian A. Young
  • Publication number: 20220223519
    Abstract: A device includes a device level having a metallization structure coupled to a semiconductor device and a transistor above the device level. The transistor has a body including a single crystal group III-V or group IV semiconductor material, a source structure on a first portion of the body and a drain structure on a second portion of the body, where the source structure is separate from the drain structure. The transistor further includes a gate structure including a first gate structure portion in a recess in the body and a second gate structure portion between the source structure and the drain structure. A source contact is coupled with the source structure and a drain contact is coupled with the drain structure. The source contact is in contact with the metallization structure in the device level.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Applicant: Intel Corporation
    Inventors: Gilbert Dewey, Ryan Keech, Cory Bomberger, Cheng-Ying Huang, Ashish Agrawal, Willy Rachmady, Anand Murthy
  • Publication number: 20220216347
    Abstract: Described herein are apparatuses, systems, and methods associated with metal-assisted transistors. A single crystal semiconductor material may be seeded from a metal. The single crystal semiconductor material may form a channel region, a source, region, and/or a drain region of the transistor. The metal may form the source contact or drain contact, and the source region, channel region, and drain region may be stacked vertically on the source contact or drain contact. Alternatively, a metal-assisted semiconductor growth process may be used to form a single crystal semiconductor material on a dielectric material adjacent to the metal. The portion of the semiconductor material on the dielectric material may be used to form the transistor. Other embodiments may be described and claimed.
    Type: Application
    Filed: March 22, 2022
    Publication date: July 7, 2022
    Inventors: Van H. LE, Ashish AGRAWAL, Seung Hoon SUNG, Abhishek A. SHARMA, Ravi PILLARISETTY
  • Publication number: 20220199773
    Abstract: Integrated circuit structures having condensed source or drain structures with high germanium content are described. In an example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires. Each of the first and second epitaxial source or drain structures includes silicon and germanium, with an atomic concentration of germanium greater at a core of the epitaxial source or drain structure than at a periphery of the epitaxial source or drain structure.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 23, 2022
    Inventors: Willy RACHMADY, Jack T. KAVALIEROS, Siddharth CHOUKSEY, Ashish AGRAWAL
  • Publication number: 20220199468
    Abstract: An integrated circuit interconnect structure includes a metallization level above a first device level. The metallization level includes an interconnect structure coupled to the device structure, a conductive cap including an alloy of a metal of the interconnect structure and either silicon or germanium on an uppermost surface of the interconnect structure. A second device level above the conductive cap includes a transistor coupled with the conductive cap. The transistor includes a channel layer including a semiconductor material, where at least one sidewall of the conductive cap is co-planar with a sidewall of the channel layer. The transistor further includes a gate on a first portion of the channel layer, where the gate is between a source region and a drain region, where one of the source or the drain region is in contact with the conductive cap.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Kimin Jun, Souvik Ghosh, Willy Rachmady, Ashish Agrawal, Siddharth Chouksey, Jessica Torres, Jack Kavalieros, Matthew Metz, Ryan Keech, Koustav Ganguly, Anand Murthy
  • Publication number: 20220199402
    Abstract: High-purity Ge channeled N-type transistors include a Si-based barrier material separating the channel from a Ge source and drain that is heavily doped with an N-type impurity. The barrier material may have nanometer thickness and may also be doped with N-type impurities. Because of the Si content, N-type impurities have lower diffusivity within the barrier material and can be prevented from entering high-purity Ge channel material. In addition to Si, a barrier material may also include C. With the barrier material, an N-type transistor may display higher channel mobility and reduced short-channel effects.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Koustav Ganguly, Ryan Keech, Harold Kennel, Willy Rachmady, Ashish Agrawal, Glenn Glass, Anand Murthy, Jack Kavalieros
  • Publication number: 20220199624
    Abstract: Monolithic two-dimensional (2D) arrays of double-sided DRAM cells including a frontside bit cell over a backside bit cell. Each double-sided cell includes a stacked transistor structure having at least a first transistor over a second transistor. Each double-sided cell further includes a first capacitor on a frontside of the stacked transistor structure and electrically coupled to a source/drain of the first transistor. Each double-sided cell further includes a second capacitor on a backside of the stacked transistor structure and electrically coupled to a source/drain of the second transistor. Frontside cell addressing interconnects are electrically coupled to other terminals of at least the first transistor while one or more backside addressing interconnects are electrically coupled to at least one terminal of the second transistor or second capacitor.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Ashish Agrawal, Gilbert Dewey, Abhishek A. Sharma, Wilfred Gomes, Jack Kavalieros
  • Publication number: 20220199771
    Abstract: Neighboring gate-all-around integrated circuit structures having a conductive contact stressor between epitaxial source or drain regions are described. In an example, a first vertical arrangement of nanowires and a second vertical arrangement of nanowires above a substrate. A first gate stack is over the first vertical arrangement of nanowires. A second gate stack is over the second vertical arrangement of nanowires. First epitaxial source or drain structures are at ends of the first vertical arrangement of nanowires. Second epitaxial source or drain structures are at ends of the second vertical arrangement of nanowires. An intervening conductive contact structure is between neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures. The intervening conductive contact structure imparts a stress to the neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: Siddharth CHOUKSEY, Jack T. KAVALIEROS, Stephen M. CEA, Ashish AGRAWAL, Willy RACHMADY
  • Publication number: 20220190564
    Abstract: The present invention relates to a contact finger alignment arrangement (100) to facilitate electrical connections in a switchgear cubicle (102), said contact finger alignment arrangement (100) comprising a first contact finger (104-1) and a second contact finger (104-2) extending parallel to a longitudinal axis (106), each of said contact fingers (104-1,104-2) having a front end (108) defining a contact receiving portion to facilitate longitudinal insertion of a contact arm (114) fixed to said cubicle (102), a coupling portion (118) for mechanically coupling the first contact finger (104-1) and the second contact finger (104-2), and a rear end (112).
    Type: Application
    Filed: November 25, 2021
    Publication date: June 16, 2022
    Inventor: Ashish AGRAWAL
  • Publication number: 20220190159
    Abstract: Integrated circuit structures having GeSnB source or drain structures, and methods of fabricating integrated circuit structures having GeSnB source or drain structures, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, and a second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires. The first and second epitaxial source or drain structures include germanium, tin and boron.
    Type: Application
    Filed: December 15, 2020
    Publication date: June 16, 2022
    Inventors: Rajat PAUL, Willy RACHMADY, Jessica TORRES, Rambert NAHM, Ashish AGRAWAL, Siddharth CHOUKSEY, Gilbert DEWEY, Jack T. KAVALIEROS
  • Patent number: 11335793
    Abstract: Tunneling Field Effect Transistors (TFETs) are promising devices in that they promise significant performance increase and energy consumption decrease due to a steeper subthreshold slope (for example, smaller sub-threshold swing). In various embodiments, vertical fin-based TFETs can be fabricated in trenches, for example, silicon trenches. In another embodiment, vertical TFETs can be used on different material systems acting as a substrate and/or trenches (for example, Si, Ge, III-V semiconductors, GaN, and the like). In one embodiment, the tunneling direction in the channel of the vertical TFET can be perpendicular to the Si substrates. In one embodiment, this can be different than the tunneling direction in the channel of lateral TFETs.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: May 17, 2022
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Jack Kavalieros, Ian Young, Matthew Metz, Willy Rachmady, Uygar Avci, Ashish Agrawal, Benjamin Chu-Kung
  • Publication number: 20220148917
    Abstract: An aspect of the disclosure relates to an integrated circuit. The integrated circuit includes a first electrically conductive structure, a thin film crystal layer located on the first electrically conductive structure, and a second electrically conductive structure including metal e.g. copper. The second electrically conductive structure is located on the thin film crystal layer. The first electrically conductive structure is electrically connected to the second electrically conductive structure through the thin film crystal layer. The thin film crystal layer may be provided as a copper diffusion barrier.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Inventors: Carl NAYLOR, Ashish AGRAWAL, Kevin LIN, Abhishek Anil SHARMA, Mauro KOBRINSKY, Christopher JEZEWSKI, Urusa ALAAN