Patents by Inventor Ashish Verma Penumatcha

Ashish Verma Penumatcha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220102499
    Abstract: Disclosed herein are transistors including two-dimensional materials, as well as related methods and devices. In some embodiments, a transistor may include a first two-dimensional channel material and a second two-dimensional source/drain (S/D) material in a source/drain (S/D), and the first two-dimensional material and the second two-dimensional material may have different compositions or thicknesses. In some embodiments, a transistor may include a first two-dimensional material in a channel and a second two-dimensional material in a source/drain (S/D), wherein the first two-dimensional material is a single-crystal material, and the second two-dimensional material is a single-crystal material.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: INTEL CORPORATION
    Inventors: Carl Hugo Naylor, Kevin P. O'Brien, Chelsey Jane Dorow, Kirby Kurtis Maxey, Tanay Arun Gosavi, Ashish Verma Penumatcha, Urusa Shahriar Alaan, Uygar E. Avci
  • Publication number: 20220102495
    Abstract: Disclosed herein are transistors including two-dimensional materials, as well as related methods and devices. In some embodiments, a transistor may include a first two-dimensional channel material and a second two-dimensional source/drain (S/D) material in a source/drain (S/D), and the first two-dimensional material and the second two-dimensional material may have different compositions or thicknesses. In some embodiments, a transistor may include a first two-dimensional material in a channel and a second two-dimensional material in a source/drain (S/D), wherein the first two-dimensional material is a single-crystal material, and the second two-dimensional material is a single-crystal material.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: Kirby Kurtis Maxey, Ashish Verma Penumatcha, Carl Hugo Naylor, Chelsey Jane Dorow, Kevin P. O'Brien, Shriram Shivaraman, Tanay Arun Gosavi, Uygar E. Avci
  • Publication number: 20210408288
    Abstract: Embodiments disclosed herein comprise semiconductor devices with two dimensional (2D) semiconductor channels and methods of forming such devices. In an embodiment, the semiconductor device comprises a source contact and a drain contact. In an embodiment, a 2D semiconductor channel is between the source contact and the drain contact. In an embodiment, the 2D semiconductor channel is a shell.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Kevin P. O'Brien, Carl NAYLOR, Chelsey DOROW, Kirby MAXEY, Tanay GOSAVI, Ashish Verma PENUMATCHA, Shriram SHIVARAMAN, Chia-Ching LIN, Sudarat LEE, Uygar E. AVCI
  • Publication number: 20210408227
    Abstract: A transistor structure includes a first channel layer over a second channel layer, where the first and the second channel layers include a monocrystalline transition metal dichalcogenide (TMD). The transistor structure further includes a source material coupled to a first end of the first and second channel layers, a drain material coupled to a second end of the first and second channel layers, a gate electrode between the source material and the drain material, and between the first channel layer and the second channel layer and a gate dielectric between the gate electrode and each of the first channel layer and the second channel layer.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Kevin O'Brien, Chelsey Dorow, Kirby Maxey, Carl Naylor, Shriram Shivaraman, Sudarat Lee, Tanay Gosavi, Chia-Ching Lin, Uygar Avci, Ashish Verma Penumatcha
  • Publication number: 20210408375
    Abstract: A transistor includes a channel including a first layer including a first monocrystalline transition metal dichalcogenide (TMD) material, where the first layer is stoichiometric and includes a first transition metal. The channel further includes a second layer above the first layer, the second layer including a second monocrystalline TMD material, where the second monocrystalline TMD material includes a second transition metal and oxygen, and where the second layer is sub-stoichiometric. The transistor further includes a gate electrode above a first portion of the channel layer, a gate dielectric layer between the channel layer and the gate electrode, a source contact on a second portion of the channel layer and a drain contact on a third portion of the channel layer, where the gate electrode is between drain contact and the source contact.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Chelsey Dorow, Kevin O'Brien, Carl Naylor, Uygar Avci, Sudarat Lee, Ashish Verma Penumatcha, Chia-Ching Lin, Tanay Gosavi, Shriram Shivaraman, Kirby Maxey
  • Publication number: 20210398993
    Abstract: Described herein are ferroelectric (FE) memory cells that include transistors having gate stacks separate from FE capacitors of these cells. An example memory cell may be implemented as an IC device that includes a support structure (e.g., a substrate) and a transistor provided over the support structure and including a gate stack. The IC device also includes a FE capacitor having a first capacitor electrode, a second capacitor electrode, and a capacitor insulator of a FE material between the first capacitor electrode and the second capacitor electrode, where the FE capacitor is separate from the gate stack (i.e., is not integrated within the gate stack and does not have any layers that are part of the gate stack). The IC device further includes an interconnect structure, configured to electrically couple the gate stack and the first capacitor electrode.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 23, 2021
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, Shriram Shivaraman, Sou-Chi Chang, Jack T. Kavalieros, Uygar E. Avci, Chia-Ching Lin, Seung Hoon Sung, Ashish Verma Penumatcha, Ian A. Young, Devin R. Merrill, Matthew V. Metz, I-Cheng Tung
  • Publication number: 20210391478
    Abstract: Embodiments include two-dimensional (2D) semiconductor sheet transistors and methods of forming such devices. In an embodiment, a semiconductor device comprises a stack of 2D semiconductor sheets, where individual ones of the 2D semiconductor sheets have a first end and a second end opposite from the first end. In an embodiment, a first spacer is over the first end of the 2D semiconductor sheets, and a second spacer is over the second end of the 2D semiconductor sheets. Embodiments further comprise a gate electrode between the first spacer and the second spacer, a source contact adjacent to the first end of the 2D semiconductor sheets, and a drain contact adjacent to the second end of the 2D semiconductor sheets.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 16, 2021
    Inventors: Kirby MAXEY, Chelsey DOROW, Kevin P. O'BRIEN, Carl NAYLOR, Ashish Verma PENUMATCHA, Tanay GOSAVI, Uygar E. AVCI, Shriram SHIVARAMAN
  • Publication number: 20210305398
    Abstract: A capacitor device includes a first electrode having a first metal alloy or a metal oxide, a relaxor ferroelectric layer adjacent to the first electrode, where the ferroelectric layer includes oxygen and two or more of lead, barium, manganese, zirconium, titanium, iron, bismuth, strontium, neodymium, potassium, or niobium and a second electrode coupled with the relaxor ferroelectric layer, where the second electrode includes a second metal alloy or a second metal oxide.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Sou-Chi Chang, Chia-Ching Lin, Nazila Haratipour, Tanay Gosavi, I-Cheng Tung, Seung Hoon Sung, Ian Young, Jack Kavalieros, Uygar Avci, Ashish Verma Penumatcha
  • Publication number: 20210167073
    Abstract: A device is disclosed. The device includes a substrate that includes a base portion and a fin portion that extends upward from the base portion, an insulator layer on sides and top of the fin portion, a first conductor layer on a first side surface of the insulator layer, a second conductor layer on a second side surface of the insulator layer, and a ferroelectric layer on portions of a top surface of the base portion, a portion of the insulator layer below the first conductor layer, a side and top surface of the first conductor layer, a top surface of the insulator layer above the fin portion, a side and top surface of the second conductor layer, and a portion of the insulator layer below the second conductor layer. A word line conductor is on the top surface of the ferroelectric layer.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Inventors: Shriram Shivaraman, Seung Hoon Sung, Ashish Verma Penumatcha, Uygar E. Avci
  • Publication number: 20210167182
    Abstract: A integrated circuit structure comprises a fin extending from a substrate. The fin comprises source and drain regions and a channel region between the source and drain regions. A multilayer high-k gate dielectric stack comprises at least a first high-k material and a second high-k material, the first high-k material extending conformally over the fin over the channel region, and the second high-k material conformal to the first high-k material, wherein either the first high-k material or the second high-k material has a modified material property different from the other high-k material, wherein the modified material property comprises at least one of ferroelectricity, crystalline phase, texturing, ordering orientation of the crystalline phase or texturing to a specific crystalline direction or plane, strain, surface roughness, and lattice constant and combinations thereof. A gate electrode ix over and on a topmost high-k material in the multilayer high-k gate dielectric stack.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Inventors: Seung Hoon SUNG, Ashish Verma PENUMATCHA, Sou-Chi CHANG, Devin MERRILL, I-Cheng TUNG, Nazila HARATIPOUR, Jack T. KAVALIEROS, Ian A. YOUNG, Matthew V. METZ, Uygar E. AVCI, Chia-Ching LIN, Owen LOH, Shriram SHIVARAMAN, Eric Charles MATTSON
  • Publication number: 20210111179
    Abstract: A memory device comprises a bitline along a first direction. A wordline is along a second direction orthogonal to the first direction. An access transistor is coupled to the bitline and the wordline. A first ferroelectric capacitor is vertically aligned with and coupled to the access transistor. A second ferroelectric capacitor is vertically aligned with the first ferroelectric capacitor and coupled to the access transistor, wherein both the first ferroelectric capacitor and the second ferroelectric capacitor are controlled by the access transistor.
    Type: Application
    Filed: October 11, 2019
    Publication date: April 15, 2021
    Inventors: Shriram SHIVARAMAN, Sou-Chi CHANG, Ashish Verma PENUMATCHA, Nazila HARATIPOUR, Uygar E. AVCI
  • Patent number: 10886286
    Abstract: An embodiment includes a substrate having a surface; a first layer that includes a metal and is on the substrate; a second layer that includes the metal and is on the first layer; a first switching device between the first and second layers; a second switching device between the first and second layers; a capacitor between the first and second layers, the capacitor including ferroelectric materials; a memory cell that includes the first switching device and the capacitor; an interconnect line that couples the first and second switching devices to each other; wherein: (a) the surface is substantially disposed in a first plane, and (b) a second plane is parallel to the first plane, the second plane intersecting the first and second switching devices. Other embodiments are addressed herein.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 5, 2021
    Assignee: Intel Corporation
    Inventors: Ashish Verma Penumatcha, Daniel H. Morris, Uygar E. Avci, Ian A. Young
  • Patent number: 10886265
    Abstract: An embodiment includes an apparatus comprising: a dielectric material including fixed charges, the fixed charges each having a first polarity; a channel comprising a channel material, the channel material including a 2-dimensional (2D) material; a drain node; and a source node including a source material, the source material including at least one of the 2D material and an additional 2D material; wherein the source material: (a) includes charges each having a second polarity that is opposite the first polarity, (b) directly contacts the dielectric material. Other embodiments are described herein.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: January 5, 2021
    Assignee: Intel Corporation
    Inventors: Ashish Verma Penumatcha, Uygar Avci, Ian Young
  • Publication number: 20200403081
    Abstract: Described is a transistor which includes: a source region; a drain region; and a gate region between the source and drain regions, wherein the gate region comprises: high-K dielectric material between spacers such that the high-K dielectric material is recessed; and metal electrode on the recessed high-K dielectric material. The gate recessed gate dielectric allows for using thick gate dielectric even with much advanced process technology nodes (e.g., 7 nm and below).
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Inventors: Seung Hoon Sung, Sou-Chi Chang, Ashish Verma Penumatcha, Nazila Haratipour, Matthew Metz, Michael Harper, Jack Kavalieros, Uygar Avci, Ian Young
  • Publication number: 20200312949
    Abstract: A capacitor is disclosed. The capacitor includes a first metal layer, a second metal layer on the first metal layer, a ferroelectric layer on the second metal layer, and a third metal layer on the ferroelectric layer. The second metal layer includes a first non-reactive barrier metal and the third metal layer includes a second non-reactive barrier metal. A fourth metal layer is on the third metal layer.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Nazila HARATIPOUR, Chia-Ching LIN, Sou-Chi CHANG, Ashish Verma PENUMATCHA, Owen LOH, Mengcheng LU, Seung Hoon SUNG, Ian A. YOUNG, Uygar AVCI, Jack T. KAVALIEROS
  • Publication number: 20200312976
    Abstract: Techniques and mechanisms to provide electrical insulation between a gate and a channel region of a non-planar circuit device. In an embodiment, the gate structure, and insulation spacers at opposite respective sides of the gate structure, each extend over a semiconductor fin structure. In a region between the insulation spacers, a first dielectric layer extends conformally over the fin, and a second dielectric layer adjoins and extends conformally over the first dielectric layer. A third dielectric layer, adjoining the second dielectric layer and the insulation spacers, extends under the gate structure. Of the first, second and third dielectric layers, the third dielectric layer is conformal to respective sidewalls of the insulation spacers. In another embodiment, the second dielectric layer is of dielectric constant which is greater than that of the first dielectric layer, and equal to or less than that of the third dielectric layer.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Seung Hoon Sung, Jack Kavalieros, Ian Young, Matthew Metz, Uygar Avci, Devin Merrill, Ashish Verma Penumatcha, Chia-Ching Lin, Owen Loh
  • Publication number: 20200312950
    Abstract: A capacitor is disclosed that includes a first metal layer and a seed layer on the first metal layer. The seed layer includes a polar phase crystalline structure. The capacitor also includes a ferroelectric layer on the seed layer and a second metal layer on the ferroelectric layer.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 1, 2020
    Inventors: Nazila HARATIPOUR, Chia-Ching LIN, Sou-Chi CHANG, Ashish Verma PENUMATCHA, Owen LOH, Mengcheng LU, Seung Hoon SUNG, Ian A. YOUNG, Uygar AVCI, Jack T. KAVALIEROS
  • Publication number: 20200312978
    Abstract: Techniques and mechanisms for providing electrical insulation or other protection of an integrated circuit (IC) device with a spacer structure which comprises an (anti)ferromagnetic material. In an embodiment, a transistor comprises doped source or drain regions and a channel region which are each disposed in a fin structure, wherein a gate electrode and an underlying dielectric layer of the transistor each extend over the channel region. Insulation spacers are disposed on opposite sides of the gate electrode, where at least a portion of one such insulation spacer comprises an (anti)ferroelectric material. Another portion of the insulation spacer comprises a non-(anti)ferroelectric material. In another embodiment, the two portions of the spacer are offset vertically from one another, wherein the (anti)ferroelectric portion forms a bottom of the spacer.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Jack KAVALIEROS, Ian YOUNG, Matthew METZ, Uygar AVCI, Chia-Ching LIN, Owen LOH, Seung Hoon SUNG, Aditya KASUKURTI, Sou-Chi CHANG, Tanay GOSAVI, Ashish Verma PENUMATCHA
  • Publication number: 20200286686
    Abstract: Described is a ferroelectric-based capacitor that improves reliability of a ferroelectric memory by using low-leakage insulating thin film. In one example, the low-leakage insulating thin film is positioned between a bottom electrode and a ferroelectric oxide. In another example, the low-leakage insulating thin film is positioned between a top electrode and ferroelectric oxide. In yet another example, the low-leakage insulating thin film is positioned in the middle of ferroelectric oxide to reduce the leakage current and improve reliability of the ferroelectric oxide.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sou-Chi Chang, Ashish Verma Penumatcha, Nazila Haratipour, Seung Hoon Sung, Owen Y. Loh, Jack Kavalieros, Uygar E. Avci, Ian A. Young
  • Publication number: 20200286984
    Abstract: Disclosed herein are capacitors with ferroelectric or antiferroelectric (FE/AFE) material and dielectric material, as well as related methods and devices. In some embodiments, a capacitor may include two electrodes, a layer of FE/AFE material between the electrodes, and a layer of dielectric material between the electrodes.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Sou-Chi Chang, Chia-Ching Lin, Ashish Verma Penumatcha, Uygar E. Avci, Ian A. Young