Patents by Inventor Ashok K. Kapoor

Ashok K. Kapoor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080272407
    Abstract: A semiconductor device includes a silicon on insulator (SOI) substrate, comprising an insulation layer formed on semiconductor material, and a fin structure. The fin structure is formed of semiconductor material and extends from the SOI substrate. Additionally, the fin structure includes a source region, a drain region, a channel region, and a gate region. The source region, drain region, and the channel region are doped with a first type of impurities, and the gate region is doped with a second type of impurities. The gate region abuts the channel region along at least one boundary, and the channel region is operable to conduct current between the drain region and the source region when the semiconductor device is operating in an on state.
    Type: Application
    Filed: May 2, 2008
    Publication date: November 6, 2008
    Applicant: DSM Solutions, Inc.
    Inventor: Ashok K. Kapoor
  • Publication number: 20080237657
    Abstract: An integrated circuit device can include at least one bipolar junction transistor (BJT) having a first base electrode comprising a semiconductor material doped to a first conductivity type formed on and in contact with a surface of the semiconductor substrate, and separated from an emitter electrode by a separation space. A first base region can be formed in the substrate below the emitter electrode and include a first portion of the substrate doped to the first conductivity type. A second base region can be formed in the substrate below the separation space and can include a second portion of the substrate doped to the first conductivity type.
    Type: Application
    Filed: February 21, 2008
    Publication date: October 2, 2008
    Inventor: Ashok K. Kapoor
  • Patent number: 7071734
    Abstract: A programmable logic device (PLD) includes programmable electronic circuitry. The programmable electronic circuitry, fabricated in a silicon substrate, may include a variety of configurable or programmable logic circuitry. The PLD also includes a memory circuitry coupled to the programmable electronic circuitry. The memory circuitry is fabricated using silicon-germanium.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: July 4, 2006
    Assignee: Altera Corporation
    Inventor: Ashok K. Kapoor
  • Patent number: 6861739
    Abstract: A method for minimum metal consumption power distribution includes the steps of forming a circuit having a plurality of circuit components on an electrically insulated substrate and forming a plurality of supply voltage regulators on the electrically insulating substrate wherein each of the plurality of supply voltage regulators is located adjacent to each of the plurality of circuit components respectively, and each of the plurality of supply voltage regulators is connected to each of the plurality of circuit components respectively for generating a regulated voltage rail output to each of the plurality of circuit components respectively.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: March 1, 2005
    Assignee: LSI Logic Corporation
    Inventors: Azeez J. Bhavnagarwala, Ashok K. Kapoor
  • Patent number: 6741122
    Abstract: An improved method and design for adjusting clock skew in a wire trace is disclosed. Aspects of the invention include a corrugated pattern wire trace bracketed by a pair of parallel conducting wire frames with wire extensions projecting between the corrugations of the wire trace. The wire frames are connected to a voltage supply. The transmission properties of the wire trace, and thus the degree of clock skew associated with the wire trace, are affected by the number of wire extensions protruding between the corrugations, their degree of penetration, as well as other factors inherent in the design. The present design can achieve the same degree of clock skew with a smaller surface area covered and with fewer resistive losses than with prior art designs.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: May 25, 2004
    Assignee: LSI Logic Corporation
    Inventors: Ashok K. Kapoor, Lei Lin
  • Publication number: 20040070421
    Abstract: A programmable logic device (PLD) includes programmable electronic circuitry. The programmable electronic circuitry, fabricated in a silicon substrate, may include a variety of configurable or programmable logic circuitry. The PLD also includes a memory circuitry coupled to the programmable electronic circuitry. The memory circuitry is fabricated using silicon-germanium.
    Type: Application
    Filed: October 15, 2002
    Publication date: April 15, 2004
    Inventor: Ashok K. Kapoor
  • Patent number: 6529400
    Abstract: A source pulsed, dynamic threshold complementary metal oxide semiconductor static random access memory dynamically controls cell transistor threshold voltage to increase cell stability, decrease cell standby power, and reduce cell delay. A memory cell includes a low storage node and a high storage node wherein the low storage node is driven below Vss during a read access and the high storage node is driven above Vdd during the read access.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: March 4, 2003
    Assignee: LSI Logic Corporation
    Inventors: Azeez J. Bhavnagarwala, Ashok K. Kapoor
  • Publication number: 20030034832
    Abstract: An improved method and design for adjusting clock skew in a wire trace comprising a corrugated pattern wire trace bracketed by a pair of parallel conducting wire frames with wire extensions projecting between the corrugations of the wire trace. The wire frames are connected to a voltage supply. The transmission properties of the wire trace, and thus the degree of clock skew associated with the wire trace, are affected by the number of wire extensions protruding between the corrugations, their degree of penetration, as well as other factors inherent in the design. The present design can achieve the same degree of clock skew with a smaller surface area covered and with fewer resistive losses than with prior art designs.
    Type: Application
    Filed: January 12, 2001
    Publication date: February 20, 2003
    Inventors: Ashok K. Kapoor, Lei Lin
  • Patent number: 6418353
    Abstract: Automated photolithography of integrated circuit wafers is enabled with a processor connected to a Rayleigh derator, a form factor generator, a logic synthesizer, a layout generator, a lithography module and a wafer process. The Rayleigh derator receives manufacturing information resulting from yield data in the wafer process, and this manufacturing data is then used to derate the theoretical minimum feature size available for etching wafer masks given a known light source and object lens numerical aperture. This minimum feature size is then used by a form factor generator in sizing transistors in a net list to their smallest manufacturable size. A logic synthesizer then converts the net list into a physical design using a layout generator combined with user defined constraints. This physical design is then used by the mask lithography module to generate wafer masks for use in the semiconductor manufacturing. Manufacturing data including process and.
    Type: Grant
    Filed: April 22, 1998
    Date of Patent: July 9, 2002
    Assignee: LSI Logic Corporation
    Inventors: Michael D. Rostoker, Nicholas F. Pasch, Ashok K. Kapoor
  • Patent number: 6407434
    Abstract: Several inventions are disclosed. A cell architecture using hexagonal shaped cells is disclosed. The architecture is not limited to hexagonal shaped cells. Cells may be defined by clusters of two or more hexagons, by triangles, by parallelograms, and by other polygons enabling a variety of cell shapes to be accommodated. Polydirectional non-orthogonal three layer metal routing is disclosed. The architecture may be combined with the tri-directional routing for a particularly advantageous design. In the tri-directional routing arraingement, electrical conductors for interconnecting terminals of microelectronic cells of an integrated circuit preferrably extend in three directions that are angularly displaced from each other by 60°. The conductors that extend in the three directions are preferrably formed in three different layers. A method of minimizing wire length in a semiconductor device is disclosed. A method of minimizing intermetal capacitance in a semiconductor device is disclosed.
    Type: Grant
    Filed: August 21, 1995
    Date of Patent: June 18, 2002
    Assignee: LSI Logic Corporation
    Inventors: Michael D. Rostoker, James S. Koford, Ranko Scepanovic, Edwin R. Jones, Gobi R. Padmanahben, Ashok K. Kapoor, Valeriy B. Kudryavtsev, Alexander E. Andreev, Stanislav V. Aleshin, Alexander S. Podkolzin
  • Patent number: 6316318
    Abstract: A method is described which forms an MOS transistor having a narrow diffusion region that is smaller than the diffusion region defined using photoresist in a conventional CMOS processing. In one embodiment, LOCOS can be used to form isolation (e.g., shallow trench) between active devices. A polysilicon layer is then deposited and doped either n+ or p+ selectively. The polysilicon layer is then patterned. Next, a dielectric layer and a refractory layer are deposited over he patterned polysilicon layer. Next, a contact hole with a high aspect ratio is defined in the oxide where the transistor will be formed. Angled implant of lightly-doped drain (LDD) regions or graft source/drain regions are formed on two opposite sides of the contact hole. The refractory metal layer is then removed. Spacers are then formed on opposite sidewall of the contact hole. A gate oxide layer is either thermally grown or deposited in the contact, before or after spacer formation.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: November 13, 2001
    Assignee: National Semiconductor Corporation
    Inventor: Ashok K. Kapoor
  • Patent number: 6312980
    Abstract: Several inventions are disclosed. A cell architecture using hexagonal shaped cells is disclosed. The architecture is not limited to hexagonal shaped cells. Cells may be defined by clusters of two or more hexagons, by triangles, by parallelograms, and by other polygons enabling a variety of cell shapes to be accommodated. Polydirectional non-orthogonal three layer metal routing is disclosed. The architecture may be combined with the tri-directional routing for a particularly advantageous design. In the tri-directional routing arraingement, electrical conductors for interconnecting terminals of microelectronic cells of an integrated circuit preferrably extend in three directions that are angularly displaced from each other by 60°. The conductors that extend in the three directions are preferrably formed in three different layers. A method of minimizing wire length in a semiconductor device is disclosed. A method of minimizing intermetal capacitance in a semiconductor device is disclosed.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: November 6, 2001
    Assignee: LSI Logic Corporation
    Inventors: Michael D. Rostoker, James S. Koford, Ranko Scepanovic, Edwin R. Jones, Gobi R. Padmanahben, Ashok K. Kapoor, Valeriv B. Kudryavtsev, Alexander E. Andreev, Stanislav V. Aleshin, Alexander S. Podkolzin
  • Patent number: 6303995
    Abstract: Disclosed is an integrated circuit structure having one or more metal lines thereon with metal line sidewall retention structures formed on the sides of the metal lines. The metal line sidewall retention structures comprise a material sufficiently hard to inhibit lateral distortion or expansion of portions of the metal line during subsequent processing or use of the metal line. The metal line sidewall retention structures are formed by anisotropically etching a layer of a material sufficiently hard to inhibit lateral distortion or expansion of portions of the metal line after formation of a layer of such a material over and around the sides of the metal lines.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: October 16, 2001
    Assignee: LSI Logic Corporation
    Inventors: Ashok K. Kapoor, Ratan K. Choudhury
  • Patent number: 6300663
    Abstract: A static random-access memory integrated circuit formed on a single substrate includes a storage IGFET formed on the substrate and having a first area and a first capacitance. A gating FET formed on the substrate has an area substantially equal to the first area with a capacitance substantially less than the first capacitance. In one aspect, the storage FET has a substantially thicker gate oxide than the gating FET. In another aspect, the gate oxide of one of the FETs is formed from a different material than that of the other FET. A method for fabricating such IGFETs on a single substrate is also provided in which source and drain regions are formed adjacent the surface of the substrate. A first layer of gate oxide is formed on the surface of the substrate over the channels of the first and the second FETs. The first layer of gate oxide is then covered by a nitride layer which is thereafter etched away over the channel of one of the FETs.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: October 9, 2001
    Assignee: LSI Logic Corporation
    Inventor: Ashok K. Kapoor
  • Patent number: 6117736
    Abstract: A static random-access memory integrated circuit formed on a single substrate includes a storage IGFET formed on the substrate and having a first area and a first capacitance. A gating FET formed on the substrate has an area substantially equal to the first area with a capacitance substantially less than the first capacitance. In one aspect, the storage FET has a substantially thicker gate oxide than the gating FET. In another aspect, the gate oxide of one of the FETs is formed from a different material than that of the other FET. A method for fabricating such IGFETs on a single substrate is also provided in which source and drain regions are formed adjacent the surface of the substrate. A first layer of gate oxide is formed on the surface of the substrate over the channels of the first and the second FETs. The first layer of gate oxide is then covered by a nitride layer which is thereafter etched away over the channel of one of the FETs.
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: September 12, 2000
    Assignee: LSI Logic Corporation
    Inventor: Ashok K. Kapoor
  • Patent number: 6109775
    Abstract: Disclosed is the formation of additional lines, either dummy lines or active lines, in an electrically conductive pattern of lines to provide more uniform loading for either etching or chemical/mechanical polishing of a layer of electrically conductive material from which the pattern of lines is formed. Also disclosed is the use of additional or dummy vias to balance the loading during etching of the vias, as well as to provide stress relief for underlying metal in regions or areas having a low density of vias. Further disclosed is the use of a working grid on the integrated circuit structure to analyze the spacing of lines or vias for the above effects.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: August 29, 2000
    Assignee: LSI Logic Corporation
    Inventors: Prabhakar P. Tripathi, Keith Chao, Ratan K. Choudhury, Gauri C. Das, Nicholas K. Eib, Ashok K. Kapoor, Thomas G. Mallon
  • Patent number: 6097073
    Abstract: Several inventions are disclosed. A cell architecture using hexagonal shaped cells is disclosed. The architecture is not limited to hexagonal shaped cells. Cells may be defined by clusters of two or more hexagons, by triangles, by parallelograms, and by other polygons enabling a variety of cell shapes to be accommodated. Polydirectional non-orthogonal three layer metal routing is disclosed. The architecture may be combined with the tri-directional routing for a particularly advantageous design. In the tri-directional routing arraingement, electrical conductors for interconnecting terminals of microelectronic cells of an integrated circuit preferrably extend in three directions that are angularly displaced from each other by 60.degree.. The conductors that extend in the three directions are preferrably formed in three different layers. A method of minimizing wire length in a semiconductor device is disclosed. A method of minimizing intermetal capacitance in a semiconductor device is disclosed.
    Type: Grant
    Filed: August 21, 1995
    Date of Patent: August 1, 2000
    Assignee: LSI Logic Corporation
    Inventors: Michael D. Rostoker, James S. Koford, Ranko Scepanovic, Edwin R. Jones, Gobi R. Padmanahben, Ashok K. Kapoor, Valeriy B. Kudryavtsev, Alexander E. Andreev, Stanislav V. Aleshin, Alexander S. Podkolzin
  • Patent number: 5985746
    Abstract: A process and resulting product are disclosed for an integrated circuit structure including two or more metal wiring levels interconnected by metal-filled vias. A first insulation layer, such as an oxide layer, is formed over a first metal wiring level on an integrated circuit structure. A via mask layer, such as a nitride mask layer, is then formed over the insulation layer with openings formed in the via mask layer in registry with portions of the underlying metal wiring to which it is desired to make electrical contact by the formation of vias through the first insulation layer. A second insulation layer, which may comprise a second oxide layer, is then formed over the mask layer. A reverse second metal wiring level mask, such as a photoresist mask or another nitride mask, is then formed over the second insulation layer to define the second metal wiring. The second insulation layer is then anisotropically etched with an etchant which is selective to the second level metal wiring mask and the via mask, i.e.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: November 16, 1999
    Assignee: LSI Logic Corporation
    Inventor: Ashok K. Kapoor
  • Patent number: 5973376
    Abstract: Several inventions are disclosed. A cell architecture using hexagonal shaped cells is disclosed. The architecture is not limited to hexagonal shaped cells. Cells may be defined by clusters of two or more hexagons, by triangles, by parallelograms, and by other polygons enabling a variety of cell shapes to be accommodated. Polydirectional non-orthogonal three layer metal routing is disclosed. The architecture may be combined with the tri-directional routing for a particularly advantageous design. In the tri-directional routing arraingement, electrical conductors for interconnecting terminals of microelectronic cells of an integrated circuit preferrably extend in three directions that are angularly displaced from each other by 60.degree.. The conductors that extend in the three directions are preferrably formed in three different layers. A method of minimizing wire length in a semiconductor device is disclosed. A method of minimizing intermetal capacitance in a semiconductor device is disclosed.
    Type: Grant
    Filed: August 21, 1995
    Date of Patent: October 26, 1999
    Assignee: LSI Logic Corporation
    Inventors: Michael D. Rostoker, James S. Koford, Ranko Scepanovic, Edwin R. Jones, Gobi R. Padmanahben, Ashok K. Kapoor, Valeriy B. Kudryavtsev, Alexander E. Andreev, Stanislav V. Aleshin, Alexander S. Podkolzin
  • Patent number: RE38900
    Abstract: Automated photolithography of integrated circuit wafers is enabled with a processor connected to a Rayleigh derator, a form factor generator, a logic synthesizer, a layout generator, a lithography module and a wafer process. The Rayleigh derator receives manufacturing information resulting from yield data in the wafer process, and this manufacturing data is then used to derate the theoretical minimum feature size available for etching wafer masks given a known light source and object lens numerical aperture. This minimum feature size is then used by a form factor generator in sizing transistors in a net list to their smallest manufacturable size. A logic synthesizer then converts the net list into a physical design using a layout generator combined with user defined constraints. This physical design is then used by the mask lithography module to generate wafer masks for use in the semiconductor manufacturing.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: November 29, 2005
    Assignee: LSI Logic Corporation
    Inventors: Michael D. Rostoker, Nicholas F. Pasch, Ashok K. Kapoor