Patents by Inventor Ashok Sinha

Ashok Sinha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020197863
    Abstract: A system and method to form a stacked barrier layer for copper contacts formed on a substrate. The substrate is serially exposed to first and second reactive gases to form an adhesion layer. Then, the adhesion layer is serially exposed to third and fourth reactive gases to form a barrier layer adjacent to the adhesion layer. This is followed by deposition of a copper layer adjacent to the barrier layer.
    Type: Application
    Filed: June 20, 2001
    Publication date: December 26, 2002
    Inventors: Alfred W. Mak, Mei Chang, Jeong Soo Byun, Hua Chung, Ashok Sinha, Moris Kori
  • Patent number: 6399479
    Abstract: The invention provides a method for filling a structure on a substrate comprising: depositing a barrier layer on one or more surfaces of the structure, depositing a seed layer over the barrier layer, removing a portion of the seed layer, and electrochemically depositing a metal to fill the structure. Preferably, a portion or all of the seed layer formed on the sidewall portion of the structure is removed using a electrochemical de-plating process prior to the electroplating process.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: June 4, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Fusen Chen, Zheng Xu, Peijun Ding, Barry Chin, Ashok Sinha
  • Publication number: 20020033340
    Abstract: An apparatus and method is provided for analyzing or conditioning an electrochemical bath. One aspect of the invention provides a method for analyzing an electrochemical bath in an electrochemical deposition process including providing a first electrochemical bath having a first bath composition, utilizing the first electrochemical bath in an electrochemical deposition process to form a second electrochemical bath having a second bath composition and analyzing the first and second compositions to identify one or more constituents generated in the electrochemical deposition process. Additive material having a composition that is substantially the same as all or at least some of the one or more constituents generated in the electrochemical deposition process may be added to another electrochemical bath to produce a desired chemical composition.
    Type: Application
    Filed: June 13, 2001
    Publication date: March 21, 2002
    Inventors: Robin Cheung, Daniel A. Carl, Liang-Yuh Chen, Yezdi Dordi, Paul F. Smith, Ratson Morad, Peter Hey, Ashok Sinha
  • Patent number: 6296712
    Abstract: The invention provides a substrate support member and a purge guide for directing purge gas past the edge of a substrate and towards the outer perimeter of the chamber. The purge guide includes a plurality of holes disposed around the inner perimeter thereof to provide a purge gas passage and to prevent purge gas from interfering with the deposition chemistry on the surface of the substrate. A substrate support member is also provided having a vacuum chuck for securing a substrate to the upper surface thereof. The substrate support member preferably includes a shoulder on which the purge guide is supported during processing. The invention also provides a method for shielding an edge of a substrate by flowing a purge gas adjacent the edge of the substrate and then through a plurality of purge holes on a purge guide.
    Type: Grant
    Filed: April 6, 1998
    Date of Patent: October 2, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Xin Sheng Guo, Mohan Bhan, Justin Jones, Lawrence Lei, Russell Ellwanger, Mei Chang, Ashok Sinha, Avi Tepman
  • Patent number: 6270859
    Abstract: A method of depositing titanium nitride by chemical vapor deposition in a chamber having several design features directed to the conductive nature of titanium nitride, particularly when a plasma treatment step is performed after the thermal deposition of the film. Preferably, during the post-deposition plasma treatment, RF power is applied only to the showerhead counter-electrode and none to the pedestal supporting the wafer, thereby preventing charging of the wafer.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: August 7, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Ashok Sinha, Avi Tepman, Mei Chang, Lee Luo, Alex Schreiber, Talex Sajoto, Stefan Wolff, Charles Dornfest, Michal Danek
  • Patent number: 6270621
    Abstract: A conventional plasma etch chamber is modified to reduce particulate generation in the chamber that contaminates the chamber and substrates mounted on a pedestal support being processed therein. A clamping ring cover in the chamber is made of ceramic. Grooves are machined into the cover and metal antennas can be mounted in the grooves to act as a getter for particles and pre-particle, non-volatile contaminants in the chamber. The clamping ring for the substrate being processed is also made of ceramic. Fewer particles are generated by ion bombardment using ceramic versus prior art clamping rings made of aluminum. Further, the cylinder clamping ring support which surrounds the pedestal support is fitted with a plurality of openings or windows to allow escape of purge gases that carry particles through the windows and into the adjoining exhaust system of the chamber and thus also away from the substrate being processed.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: August 7, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Simon W. Tam, Semyon Sherstinsky, Mei Chang, Alan Morrison, Ashok Sinha
  • Publication number: 20010004478
    Abstract: A method of depositing titanium nitride by chemical vapor deposition in a chamber having several design features directed to the conductive nature of titanium nitride, particularly when a plasma treatment step is performed after the thermal deposition of the film. Preferably, during the post-deposition plasma treatment, RF power is applied only to the showerhead counter-electrode and none to the pedestal supporting the wafer, thereby preventing charging of the wafer.
    Type: Application
    Filed: March 27, 1998
    Publication date: June 21, 2001
    Inventors: JUN ZHAO, ASHOK SINHA, AVI TEPMAN, MEI CHANG, LEE LUO, ALEX SCHREIBER, TALEX SAJOTO, STEFAN WOLFF, CHARLES DORNFEST, MICHAL DANEK
  • Patent number: 6189482
    Abstract: The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 Å/minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400° C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
    Type: Grant
    Filed: February 12, 1997
    Date of Patent: February 20, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Lee Luo, Xiao Liang Jin, Jia-Xiang Wang, Talex Sajoto, Stefan Wolff, Leonid Selyutin, Ashok Sinha
  • Patent number: 6176667
    Abstract: A multideck wafer processing system is described for the treatment of semiconductor wafers. The system includes at least two process chambers stacked one above the other to provide for higher wafer throughput per unit area of cleanroom space. The stacked process chambers enable sharing of pressurization, gas, electrical, and control support services for the processing chambers.
    Type: Grant
    Filed: April 30, 1996
    Date of Patent: January 23, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Fairbairn, Ashok Sinha
  • Patent number: 6136163
    Abstract: The present invention generally provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs rules and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, a rapid thermal anneal chamber disposed adjacent the loading station, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. One aspect of the invention provides a post electrochemical deposition treatment, such as a rapid thermal anneal treatment, for enhancing deposition results.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: October 24, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Robin Cheung, Ashok Sinha, Avi Tepman, Dan Carl
  • Patent number: 6129044
    Abstract: The present invention provides an approach which provides an increase in the number of usable substrates with a film, such as titanium nitride, deposited thereon at a sufficient deposition rate and where the film meets uniformity and resistivity specifications as well as providing good step coverage. In accordance with an embodiment, the present invention provides an apparatus for substrate processing. The apparatus circulates a heat exchange medium through a passage in a chamber body of a vacuum chamber, and heats a heater pedestal having a surface for supporting the substrate to a heater temperature. The heat exchange medium has a heat exchange temperature of about 60.degree. C. or less. The the apparatus also flows a gas into the chamber at a flow rate to deposit a film on a substrate, where the flow rate provides an effective temperature of the substrate lower than the heater temperature and where the film meets uniformity and resistance specifications after deposition onto a number of substrates.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: October 10, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Ashok Sinha, Avi Tepman, Mei Chang, Lee Luo, Alex Schreiber, Talex Sajoto, Stefan Wolff, Charles Dornfest, Michal Danek
  • Patent number: 6123864
    Abstract: A conventional plasma etch chamber is modified to reduce particulate generation in the chamber that contaminates the chamber and substrates mounted on a pedestal support being processed therein. A clamping ring cover in the chamber is made of ceramic. Grooves are machined into the cover and metal antennas can be mounted in the grooves to act as a getter for particles and pre-particle, non-volatile contaminants in the chamber. The clamping ring for the substrate being processed is also made of ceramic. Fewer particles are generated by ion bombardment using ceramic versus prior art clamping rings made of aluminum. Further, the cylinder clamping ring support which surrounds the pedestal support is fitted with a plurality of openings or windows to allow escape of purge gases that carry particles through the windows and into the adjoining exhaust system of the chamber and thus also away from the substrate being processed.
    Type: Grant
    Filed: October 21, 1994
    Date of Patent: September 26, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Simon W. Tam, Semyon Sherstinsky, Mei Chang, Alan Morrison, Ashok Sinha
  • Patent number: 5964947
    Abstract: A substrate processing chamber, particularly a chemical vapor deposition (CVD) chamber used both for thermal deposition of a conductive material and a subsequently performed plasma process. The invention reduces thermal deposition of the conductive material in a pumping channel exhausting the chamber. The pumping channel is lined with various elements, some of which are electrically floating and which are designed so that conductive material deposited on these elements do not deleteriously affect a plasma generated for processing the wafer.
    Type: Grant
    Filed: May 16, 1997
    Date of Patent: October 12, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Ashok Sinha, Avi Tepman, Mei Chang, Lee Luo, Alex Schreiber, Talex Sajoto, Stefan Wolff, Charles Dornfest, Michal Danek
  • Patent number: 5882419
    Abstract: An improved deposition chamber deposits useful layers on substrates. The improved chamber includes a substrate edge protection system which, in combination with a purge gas, protects selected portions of the edge and underside of the substrate from the deposition gas while preventing the creation of a masked area on the substrate edge. The substrate is supported on a solid receiving plate, and a positioning assembly aligns the substrate to the receiving plate. In some embodiments, the invention may include a stem interconnected to the substrate, a heat limiting member disposed about the stem, and a shroud extending about the stem.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: March 16, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Ashok Sinha, Mei Chang, Ilya Perlov, Karl Littau, Alan Morrison, Lawrence Chung-Lai Lei
  • Patent number: 5856240
    Abstract: Vacuum CVD chambers are disclosed which provide a more uniformly deposited thin film on a substrate. The chamber susceptor mount for the substrate is heated resistively with a single coil firmly contacting the metal of the susceptor on all sides, providing uniform temperatures across the susceptor mount for a substrate. A purge gas line is connected to openings in the susceptor outside of the periphery of the substrate to prevent edge and backside contamination of the substrate. A vacuum feed line mounts the substrate to the susceptor plate during processing. A refractory purge guide, or a plurality of placement pins, maintain a fixed gap passage for the purge gases to pass alongside the edge of the wafer and into the processing area of the chamber. An exhaust pumping plate improves the uniformity of exhaustion of spent gases from the chamber.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: January 5, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Ashok Sinha, Mei Chang, Ilya Perlov, Karl A. Littau, Alan F. Morrison, Lawrence Chung-Lai Lei
  • Patent number: 5855681
    Abstract: The present invention generally provides a cassette-to-cassette vacuum processing system which concurrently processes multiple wafers and combines the advantages of single wafer process chambers and multiple wafer handling for high quality wafer processing, high wafer throughput and reduced footprint. In accordance with one aspect of the invention, the system is preferably a staged vacuum system which generally includes a loadlock chamber for introducing wafers into the system and which also provides wafer cooling following processing, a transfer chamber for housing a wafer handler, and one or more processing chambers each having two or more processing regions which are isolatable from each other and preferably share a common gas supply and a common exhaust pump. The processing regions also preferably include separate gas distribution assemblies and RF power sources to provide a uniform plasma density over a wafer surface in each processing region.
    Type: Grant
    Filed: November 18, 1996
    Date of Patent: January 5, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Dan Maydan, Sasson Somekh, Ashok Sinha, Kevin Fairbairn, Christopher Lane, Kelly Colborne, Hari K. Ponnekanti, W. N.(Nick) Taylor
  • Patent number: 5846332
    Abstract: A substrate processing chamber, particularly a chemical vapor deposition (CVD) chamber used both for thermal deposition of a conductive material and a subsequently performed plasma process. The invention reduces thermal deposition of the conductive material on peripheral portions of the pedestal supporting a wafer and in a pumping channel exhausting the chamber. A peripheral ring placed on the pedestal, preferably also used to center the wafer, is thermally isolated from the pedestal so that its temperature is kept substantially lower than that of the wafer. Despite its thermal isolation, the peripheral ring is electrically connected to the pedestal to prevent arcing. The pumping channel is lined with various elements, some of which are electrically floating and which are designed so that conductive material deposited on these elements do not deleteriously affect a plasma generated for processing the wafer.
    Type: Grant
    Filed: July 12, 1996
    Date of Patent: December 8, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Ashok Sinha, Avi Tepman, Mei Chang, Lee Luo, Alex Schreiber, Talex Sajoto, Stefan Wolff, Charles Dornfest, Michal Danek
  • Patent number: 5695568
    Abstract: An improved deposition chamber deposits useful layers on substrates. The improved chamber includes a substrate edge protection system which, in combination with a purge gas, protects selected portions of the edge and underside of the substrate from the deposition gas while preventing the creation of a masked area on the substrate edge. The substrate is supported on a solid receiving plate, which is supported by a stem having a heat limiting member and a shroud to protect the stem and a positioning assembly aligns the substrate to the receiving plate.
    Type: Grant
    Filed: February 23, 1994
    Date of Patent: December 9, 1997
    Assignee: Applied Materials, Inc.
    Inventors: Ashok Sinha, Mei Chang, Ilya Perlov, Karl Littau, Alan Morrison, Lawrence Chung-Lai Lei
  • Patent number: 5384008
    Abstract: A process and apparatus is described for depositing a layer of material over the entire frontside surface of a semiconductor wafer without leaving residues on the backside of said wafer. A semiconductor wafer is placed on the surface of a first wafer support without contacting the frontside surface of the wafer to thereby permit access by deposition materials to the entire frontside surface of the wafer, and then a layer of material is deposited on the entire frontside surface of the semiconductor wafer. To remove any deposits formed on the backside of the wafer during such a deposition, the coated wafer is then placed generally coaxially on the surface of a generally circular second wafer support which will permit access to the outermost portions of the backside of the wafer. In one embodiment the second wafer support is provided with an annular groove coaxially formed in the surface of the second wafer support which faces the backside of the wafer.
    Type: Grant
    Filed: June 18, 1993
    Date of Patent: January 24, 1995
    Assignee: Applied Materials, Inc.
    Inventors: Ashok Sinha, Sasson Somekh
  • Patent number: 5201990
    Abstract: A process is described for inhibiting the vaporization or sublimation of aluminum base alloy surfaces when exposed to temperatures in excess of 400.degree. C. in a vacuum chamber used for the processing of semiconductor wafers. The process comprises treating such aluminum base alloy surfaces with a plasma comprising a nitrogen-containing gas selected from the group consisting of nitrogen and ammonia. When nitrogen gas is used, the plasma must also contain hydrogen gas. When the vacuum chamber being treated is intended to be used for the deposition of tungsten, the maximum flow of the nitrogen-containing gas into the chamber for the initial 10 seconds of the treatment process must be controlled to avoid impairment of the subsequent tungsten depositions in the chamber. After the treatment step, the cleaned and treated aluminum surface is preferably passivated with nitrogen (N.sub.2) gas.
    Type: Grant
    Filed: May 23, 1991
    Date of Patent: April 13, 1993
    Assignee: Applied Materials, Inc.
    Inventors: Mei Chang, Ashok Sinha, Turgut Sahin, Alfred Mak, Cissy Leung