Patents by Inventor Ashok V. Krishnamoorthy

Ashok V. Krishnamoorthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120326322
    Abstract: A chip package includes a substrate having a positive feature, which is defined on a surface of the substrate and which protrudes above a region on the surface proximate to the positive feature. Furthermore, the chip package includes a mechanical reinforcement mechanism defined on the substrate proximate to the positive feature that increases a lateral shear strength of the positive feature relative to the substrate. In this way, the chip package may facilitate increased reliability of a multi-chip module (MCM) that includes the chip package.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ashok V. Krishnamoorthy, Craig A. Stephen, John E. Cunningham, James G. Mitchell
  • Patent number: 8340479
    Abstract: An integrated circuit that includes an optical waveguide to convey an optical signal via an optical mode in an on-chip optical waveguide is described. In this integrated circuit, a cross-sectional area of the optical waveguide may be tapered in proximity to an electro-optic modulator in the integrated circuit, such as a germanium electro-optic modulator or a quantum-well (QW) electro-optic modulator. In particular, the cross-sectional area may be tapered from a first diameter distal from the electro-optic modulator to a second diameter proximate to the electro-optic modulator. This so-called ‘inverse taper’ may increase the spatial extent or size of the optical mode, thereby allowing the optical signal to be optically coupled to or from the electro-optic modulator with low optical loss.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: December 25, 2012
    Assignee: Oracle America, Inc.
    Inventors: Xuezhe Zheng, Ashok V. Krishnamoorthy, John E. Cunningham
  • Publication number: 20120321251
    Abstract: A multi-chip module (MCM) includes a stack of chips that are coupled using optical interconnects. On a first surface of a middle chip in the stack, there are: a first optical coupler, an optical waveguide, which is coupled to the first optical coupler, and a second optical coupler, which is coupled to the optical waveguide. The first optical coupler redirects an optical signal from the optical waveguide to a first direction (which is not in the plane of the first surface), or from the first direction to the optical waveguide. The second optical coupler redirects the optical signal from the optical waveguide to a second direction (which is not in the plane of the first surface), or from the second direction to the optical waveguide. An optical path associated with the second direction passes through an opening in a substrate in the middle chip.
    Type: Application
    Filed: August 3, 2012
    Publication date: December 20, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Jin Yao, Xuezhe Zheng, Ashok V. Krishnamoorthy, John E. Cunningham
  • Patent number: 8334149
    Abstract: A multi-chip module (MCM) is described. This MCM includes at least two substrates that are remateably mechanically coupled by positive and negative features on facing surfaces of the substrates. These positive and negative features mate with each other. In particular, a positive feature may mate with a given pair of negative features, which includes negative features on each of the substrates. Furthermore, at least one of the negative features in the given pair may include a hard magnetic material, and the positive feature and the other negative feature in the given pair may include a soft magnetic material that provide a flux-return path to the hard magnetic material. In this way, the hard magnetic material may facilitate the remateable mechanical coupling of the substrates.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: December 18, 2012
    Assignee: Oracle America, Inc.
    Inventors: Jing Shi, Hiren D. Thacker, Ashok V. Krishnamoorthy, John E. Cunningham
  • Patent number: 8325773
    Abstract: One embodiment of the present invention provides a system that facilitates adjusting the wavelengths of lasers via temperature control. This system includes a chip with an active face upon which active circuitry and signal pads reside. A thermal-control mechanism provides localized thermal control of two lasers mounted upon the active face of the chip. By individually controlling the temperature of the lasers, the thermal-control mechanism controls the wavelengths emitted by each respective laser. By creating a temperature gradient that causes a temperature difference between two or more lasers, the system can cause the lasers to emit different wavelengths.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: December 4, 2012
    Assignee: Oracle America, Inc.
    Inventors: Ashok V. Krishnamoorthy, John E. Cunningham, Bruce M. Guenin, Howard L. Davidson
  • Patent number: 8320761
    Abstract: Embodiments of a bidirectional 3-way optical splitter are described. This bidirectional 3-way optical splitter includes an optical splitter having: a first external node, a second external node, a third external node, and a fourth external node. In one mode of operation, the optical splitter may be configured to receive an external input optical signal on the first external node and to provide external output optical signals on the other external nodes. Moreover, in another mode of operation, the optical splitter may be configured to receive the external input optical signal on the third external node and to provide the external output optical signals on the other external nodes.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 27, 2012
    Assignee: Oracle America, Inc.
    Inventors: Xuezhe Zheng, Brian W. O'Krafka, Ashok V. Krishnamoorthy, John E. Cunningham
  • Patent number: 8315065
    Abstract: A multi-chip module (MCM) is described. This MCM includes at least two substrates that are remateably mechanically coupled by positive and negative features on facing surfaces of the substrates. These positive and negative features may mate and self-lock with each other. For example, the positive features on one of the surfaces may include pairs of counterposed micro-springs, and the negative features may include pits or grooves on the other surface. When the substrates are mechanically coupled, a given pair of positive features may provide a force in a plane of the other surface. Furthermore, by compressing the MCM so that the surfaces of the substrates are pushed toward each other, the mechanical coupling may be released.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: November 20, 2012
    Assignee: Oracle America, Inc.
    Inventors: Jing Shi, Hiren D. Thacker, Ashok V. Krishnamoorthy
  • Patent number: 8300990
    Abstract: An optical waveguide is described. This optical waveguide may be defined in a semiconductor layer, and may include a vertical slot that includes an electro-optic material having an electric-field-dependent index of refraction, and the electro-optic material may be other than a semiconductor in the semiconductor layer. Alternatively, the optical waveguide may include a vertical stack with two semiconductor layers that surround and partially overlap an intermediate layer, which includes the electro-optic material.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: October 30, 2012
    Assignee: Oracle America, Inc.
    Inventors: Guoliang Li, Jin Yao, Ashok V. Krishnamoorthy
  • Publication number: 20120237155
    Abstract: An optical multiplexer/demultiplexer is described. In this optical multiplexer/demultiplexer, multiple coupled-waveguide grating devices are optically coupled to a bus optical waveguide. A given coupled-waveguide grating device has a band-pass filter characteristic that encompasses multiple optical channels, thereby providing coarse optical filtering. Moreover, the optical multiplexer/demultiplexer includes multiple add/drop filters (such as ring resonators) that optically couple to the coupled-waveguide grating devices. A given add/drop filter has a filter bandwidth corresponding to a given optical channel, thereby providing fine optical filtering. Furthermore, the band-pass filter characteristic of the given coupled-waveguide grating device is approximately equal to or less than a free spectral range (FSR) of the given add/drop filter.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, Ashok V. Krishnamoorthy, Yeshaiahu Fainman
  • Patent number: 8267583
    Abstract: A multi-chip module (MCM), which includes a three-dimensional (3D) stack of chips that are coupled using optical interconnects, is described. In this MCM, disposed on a first surface of a middle chip in the 3D stack, there are: a first optical coupler, an optical waveguide, which is coupled to the first optical coupler, and a second optical coupler, which is coupled to the optical waveguide. The first optical coupler redirects an optical signal from the optical waveguide to a first direction (which is not in the plane of the first surface), or from the first direction to the optical waveguide. Moreover, the second optical coupler redirects the optical signal from the optical waveguide to a second direction (which is not in the plane of the first surface), or from the second direction to the optical waveguide. Note that an optical path associated with the second direction passes through an opening in a substrate in the middle chip.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: September 18, 2012
    Assignee: Oracle America, Inc.
    Inventors: Jin Yao, Xuezhe Zheng, Ashok V. Krishnamoorthy, John E. Cunningham
  • Publication number: 20120230695
    Abstract: Embodiments of a system that includes an array of chip modules (CMs) is described. In this system, a given CM in the array includes a semiconductor die that is configured to communicate data signals with one or more adjacent CMs through electromagnetic proximity communication using proximity connectors. Note that the proximity connectors are proximate to a surface of the semiconductor die. Moreover, the given CM is configured to communicate optical signals with other CMs through an optical signal path using optical communication, and the optical signals are encoded using wavelength-division multiplexing (WDM).
    Type: Application
    Filed: September 28, 2007
    Publication date: September 13, 2012
    Applicant: SUN MICROSYSTEMS, INC.
    Inventors: Brian W. O'Krafka, Ashok V. Krishnamoorthy, John E. Cunningham, Xuehze Zheng, Ilya A. Sharapov, Ronald Ho
  • Patent number: 8265433
    Abstract: An optical switch is described that includes two optical waveguides, which are defined in a semiconductor layer, positioned proximate to an intermediate component, such as a micro-resonator or a directional coupler. Material underneath a portion of either or both optical waveguides is removed so that the portion of either or both optical waveguides is free standing, and a group of electrodes is proximate to the free-standing portion of either or both optical waveguides. During operation of the optical switch, a spacing-control circuit applies an electrical signal to the group of electrodes. An electrostatic force associated with the electrical signal modifies a spacing between the free-standing portion of either or both optical waveguides and the intermediate component, thereby substantially increasing optical coupling between either or both optical waveguides and the intermediate component to convey a broadband optical signal between the optical waveguides.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: September 11, 2012
    Assignee: Oracle America, Inc.
    Inventors: Xuezhe Zheng, Jin Yao, Ashok V. Krishnamoorthy
  • Publication number: 20120220056
    Abstract: A multi-chip module (MCM) is described. This MCM includes at least two substrates that are remateably mechanically coupled by positive and negative features on facing surfaces of the substrates. These positive and negative features mate with each other. In particular, a positive feature may mate with a given pair of negative features, which includes negative features on each of the substrates. Furthermore, at least one of the negative features in the given pair may include a hard magnetic material, and the positive feature and the other negative feature in the given pair may include a soft magnetic material that provide a flux-return path to the hard magnetic material. In this way, the hard magnetic material may facilitate the remateable mechanical coupling of the substrates.
    Type: Application
    Filed: May 9, 2012
    Publication date: August 30, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Jing Shi, Hiren D. Thacker, Ashok V. Krishnamoorthy, John E. Cunningham
  • Publication number: 20120207424
    Abstract: An integrated circuit that includes an optical waveguide defined in a semiconductor layer is described. In this integrated circuit, light is coupled between the optical waveguide and an optical modulator, which is disposed on the optical waveguide, using 3-dimensional (3-D) taper structures that are proximate to the ends of the optical modulator. The cross-sectional areas of these 3-D taper structures transition, over a distance, from that of the optical waveguide (distal from the optical modulator) to that of optical modulator (proximate to the ends of the optical modulator). In this way, a spatial extent of an optical mode in the optical waveguide and a spatial extent of the optical mode in the optical modulator may be approximately matched to reduce the optical loss when the light is coupled to or from the optical modulator.
    Type: Application
    Filed: June 16, 2010
    Publication date: August 16, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, John E. Cunningham, Ashok V. Krishnamoorthy, Dazeng Feng, Mehdi Asghari
  • Publication number: 20120207479
    Abstract: An optical device that includes multiple optical modulators having target operating wavelengths that are distributed over a band of wavelengths and actual operating wavelengths is described. For example, the target operating wavelengths of adjacent optical modulators may be separated by a wavelength increment. Moreover, because of differences between the actual operating wavelengths and the target operating wavelengths of the optical modulators, tuning elements may be used to tune the optical modulators so that the actual operating wavelengths match corresponding carrier wavelengths in a set of optical signals. Furthermore, control logic in the optical device may assign the optical modulators to the corresponding carrier wavelengths based at least on differences between the carrier wavelengths and the actual operating wavelengths, thereby reducing an average tuning energy associated with the tuning elements.
    Type: Application
    Filed: June 8, 2011
    Publication date: August 16, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ashok V. Krishnamoorthy, Xuezhe Zheng, Guoliang Li, John E. Cunningham
  • Publication number: 20120189025
    Abstract: In a laser source, a first optical waveguide includes a gain medium, and a second optical waveguide includes a phase tuner which adjusts a phase value of the phase tuner to specify the wavelength of the laser source. Furthermore, the laser source includes a first ring resonator and a second ring resonator, which, respectively, are optically coupled to the first optical waveguide and the second optical waveguide at opposite ends of the laser source. In particular, coupling wavelengths of the first and second ring resonators may match a wavelength of the optical signal, thereby defining an optical resonance cavity in the laser source and selecting a laser mode of the laser source which is associated with the wavelength. Additionally, the laser source includes an optical amplifier that receives and amplifies the optical signal output from the optical resonance cavity.
    Type: Application
    Filed: November 23, 2010
    Publication date: July 26, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, Ashok V. Krishnamoorthy, John E. Cunningham
  • Publication number: 20120177318
    Abstract: During operation of an electro-absorption modulator, an optical signal is conveyed, using an optical waveguide in the electro-absorption modulator, to a semiconductor layer that substantially fills a gap between two portions of the optical waveguide. Then, the optical signal is electro-absorption modulated by selectively applying a voltage to electrodes that produces an electric field, approximately perpendicular to the midline of the optical waveguide, in the semiconductor layer. These electrodes are coupled to the edges of the semiconductor layer at the periphery along the width of the semiconductor layer by intervening layers. Furthermore, the intervening layers include a material that has a lower index of refraction than the semiconductor layer, and a lower optical absorption than the electrodes.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 12, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, John E. Cunningham, Ashok V. Krishnamoorthy
  • Patent number: 8212354
    Abstract: A system for proximity communication between semiconductor chips includes a package assembly. The package assembly includes a plurality of bridge circuits made of organic or plastic semiconductor material. A plurality of base chips are assembled to the package assembly. The package assembly positions and aligns the plurality of base chips such that the bridge circuits bridge the base chips and enable proximity communication between the base chips.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: July 3, 2012
    Assignee: Oracle America, Inc.
    Inventor: Ashok V. Krishnamoorthy
  • Patent number: 8207752
    Abstract: A multi-chip module (MCM) is described. This MCM includes multiple sites, where a given site in the multiple sites includes multiple chips with proximity connectors that communicate information through proximity communication within the MCM via multiple components associated with the given site. Note that the MCM includes global redundancy and local redundancy at the given site. In particular, the global redundancy involves providing one or more redundant sites in the multiple sites. Furthermore, the local redundancy involves providing one or more redundant chips in the multiple chips and one or more redundant components in the multiple components.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: June 26, 2012
    Inventors: Kannan Raj, Xuezhe Zheng, Ashok V. Krishnamoorthy, Ronald Ho, Michael O. McCracken, David K. McElfresh, John E. Cunningham
  • Patent number: 8204385
    Abstract: An optical device that includes multiple optical modulators having actual operating wavelengths at a given temperature is described. Because of differences between the actual operating wavelengths and target operating wavelengths of the optical modulators, heating elements may be used to thermally tune the optical modulators so that the actual operating wavelengths match corresponding carrier wavelengths in a set of optical signals. Furthermore, control logic in the optical device may assign the optical modulators to the corresponding carrier wavelengths based at least on differences between the carrier wavelengths and the actual operating wavelengths, thereby reducing an average thermal tuning energy associated with the heating elements.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: June 19, 2012
    Assignee: Oracle America, Inc.
    Inventors: Xuezhe Zheng, Ashok V. Krishnamoorthy, John E. Cunningham, Guoliang Li