Patents by Inventor Athanasios Polymeridis
Athanasios Polymeridis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240369662Abstract: During operation, a computer system may acquire magnetic resonance (MR) signals associated with a sample from a measurement device or memory. Then, the computer system may access a predetermined set of coil magnetic field basis vectors associated with a surface surrounding the sample, where coil sensitivities of coils in the measurement device are represented by weighted superpositions of the predetermined set of coil magnetic field basis vectors using coefficients, and where the predetermined coil magnetic field basis vectors are solutions to Maxwell's equations. Next, the computer system may solve, on a voxel-by-voxel basis for voxels associated with the sample, a nonlinear optimization problem for MR information associated with the sample and the coefficients using: a forward model that uses the MR information as inputs and simulates response physics of the sample, the MR signals and the predetermined set of coil magnetic field basis vectors.Type: ApplicationFiled: May 12, 2022Publication date: November 7, 2024Inventors: Matteo Alessandro Francavilla, Jorge Fernandez Villena, Stamatios Lefkimmiatis, Athanasios Polymeridis, Doruk Tayli
-
Patent number: 12007455Abstract: A system may measure a response associated with a sample to an excitation. The system may compute, using the measured response and the excitation as inputs to an inverse model or a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The predetermined predictive model was trained using training data for different excitation strengths, different measurement conditions, or both. The forward model may simulate response physics occurring within the sample to a given excitation, and the model parameters may include magnetic susceptibilities of the multiple voxels. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output.Type: GrantFiled: June 3, 2022Date of Patent: June 11, 2024Assignee: Q Bio, Inc.Inventors: Doruk Tayli, Stamatis Lefkimmiatis, Athanasios Polymeridis
-
Patent number: 11748642Abstract: A system may measure, using a measurement device, a response associated with a sample to an excitation. Then, the system may compute, using the measured response and the excitation as inputs to a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The forward model may simulate response physics occurring within the sample to a given excitation. For example, the forward model may be based on differential or phenomenological equations that approximates the response physics. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output to: a user, another electronic device, a display, and/or a memory.Type: GrantFiled: February 15, 2022Date of Patent: September 5, 2023Assignee: Q Bio, Inc.Inventors: Jeffrey Howard Kaditz, Jorge Fernandez Villena, Athanasios Polymeridis
-
Patent number: 11614509Abstract: During operation, a computer system may acquire magnetic resonance (MR) signals associated with a sample from a measurement device or memory. Then, the computer system may access a predetermined set of coil magnetic field basis vectors associated with a surface surrounding the sample, where coil sensitivities of coils in the measurement device are represented by weighted superpositions of the predetermined set of coil magnetic field basis vectors using coefficients, and where the predetermined coil magnetic field basis vectors are solutions to Maxwell's equations. Next, the computer system may solve, on a voxel-by-voxel basis for voxels associated with the sample, a nonlinear optimization problem for MR information associated with the sample and the coefficients using: a forward model that uses the MR information as inputs and simulates response physics of the sample, the MR signals and the predetermined set of coil magnetic field basis vectors.Type: GrantFiled: June 21, 2021Date of Patent: March 28, 2023Assignee: Q Bio, Inc.Inventors: Matteo Alessandro Francavilla, Jorge Fernandez Villena, Stamatios Lefkimmiatis, Athanasios Polymeridis, Doruk Tayli
-
Publication number: 20220308136Abstract: A system may measure a response associated with a sample to an excitation. The system may compute, using the measured response and the excitation as inputs to an inverse model or a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The predetermined predictive model was trained using training data for different excitation strengths, different measurement conditions, or both. The forward model may simulate response physics occurring within the sample to a given excitation, and the model parameters may include magnetic susceptibilities of the multiple voxels. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output.Type: ApplicationFiled: June 3, 2022Publication date: September 29, 2022Inventors: Doruk Tayli, Stamatis Lefkimmiatis, Athanasios Polymeridis
-
Patent number: 11360166Abstract: A system may measure, using a measurement device, a response associated with a sample to an excitation. Then, the system may compute, using the measured response and the excitation as inputs to one of an inverse model and a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The forward model may simulate response physics occurring within the sample to a given excitation, and the model parameters may include magnetic susceptibilities of the multiple voxels. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output to: a user, another electronic device, a display, and/or a memory.Type: GrantFiled: June 20, 2019Date of Patent: June 14, 2022Assignee: Q Bio, IncInventors: Doruk Tayli, Stamatios Lefkimmiatis, Athanasios Polymeridis
-
Patent number: 11354586Abstract: A system may measure, using a measurement device, a response associated with a sample to an excitation. Then, the system may compute, using the measured response and the excitation as inputs to a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The forward model may simulate response physics occurring within the sample to a given excitation. For example, the forward model may be based on differential or phenomenological equations that approximates the response physics. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output to: a user, another electronic device, a display, and/or a memory.Type: GrantFiled: February 15, 2019Date of Patent: June 7, 2022Assignee: Q Bio, Inc.Inventors: Jeffrey Howard Kaditz, Jorge Fernandez Villena, Athanasios Polymeridis
-
Publication number: 20220172084Abstract: A system may measure, using a measurement device, a response associated with a sample to an excitation. Then, the system may compute, using the measured response and the excitation as inputs to a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The forward model may simulate response physics occurring within the sample to a given excitation. For example, the forward model may be based on differential or phenomenological equations that approximates the response physics. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output to: a user, another electronic device, a display, and/or a memory.Type: ApplicationFiled: February 15, 2022Publication date: June 2, 2022Inventors: Jeffrey Howard Kaditz, Jorge Fernandez Villena, Athanasios Polymeridis
-
Publication number: 20210311151Abstract: During operation, a computer system may acquire magnetic resonance (MR) signals associated with a sample from a measurement device or memory. Then, the computer system may access a predetermined set of coil magnetic field basis vectors associated with a surface surrounding the sample, where coil sensitivities of coils in the measurement device are represented by weighted superpositions of the predetermined set of coil magnetic field basis vectors using coefficients, and where the predetermined coil magnetic field basis vectors are solutions to Maxwell's equations. Next, the computer system may solve, on a voxel-by-voxel basis for voxels associated with the sample, a nonlinear optimization problem for MR information associated with the sample and the coefficients using: a forward model that uses the MR information as inputs and simulates response physics of the sample, the MR signals and the predetermined set of coil magnetic field basis vectors.Type: ApplicationFiled: June 21, 2021Publication date: October 7, 2021Inventors: Matteo Alessandro Francavilla, Jorge Fernandez Villena, Stamatios Lefkimmiatis, Athanasios Polymeridis, Doruk Tayli
-
Publication number: 20210311150Abstract: During operation, a system may apply an external magnetic field and an RF pulse sequence to a sample. Then, the system may measure at least a component of a magnetization associated with the sample, such as MR signals of one or more types of nuclei in the sample. Moreover, the system may calculate at least a predicted component of the magnetization for voxels associated with the sample based on the measured component of the magnetization, a forward model, the external magnetic field and the RF pulse sequence. Next, the system may solve an inverse problem by, iteratively modifying the parameters associated with the voxels in the forward model until a difference between the predicted component of the magnetization and the measured component of the magnetization is less than a predefined value. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform.Type: ApplicationFiled: June 21, 2021Publication date: October 7, 2021Inventors: Jeffrey H. Kaditz, Athanasios Polymeridis, Jorge Fernandez Villena
-
Publication number: 20210311149Abstract: During operation, a system may apply an external magnetic field and an RF pulse sequence to a sample. Then, the system may measure at least a component of a magnetization associated with the sample, such as MR signals of one or more types of nuclei in the sample. Moreover, the system may calculate at least a predicted component of the magnetization for voxels associated with the sample based on the measured component of the magnetization, a forward model, the external magnetic field and the RF pulse sequence. Next, the system may solve an inverse problem by iteratively modifying the parameters associated with the voxels in the forward model until a difference between the predicted component of the magnetization and the measured component of the magnetization is less than a predefined value. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform.Type: ApplicationFiled: June 21, 2021Publication date: October 7, 2021Inventors: Jeffrey H. Kaditz, Athanasios Polymeridis, Jorge Fernandez Villena
-
Patent number: 11131735Abstract: A computer that determines coefficients in a representation of coil sensitivities and MR information associated with a sample is described. During operation, the computer may acquire MR signals associated with a sample from the measurement device. Then, the computer may access a predetermined set of coil magnetic field basis vectors, where weighted superpositions of the predetermined set of coil magnetic field basis vectors using the coefficients represent coil sensitivities of coils in the measurement device, and where the predetermined coil magnetic field basis vectors are solutions to Maxwell's equations. Next, the computer may solve a nonlinear optimization problem for the MR information associated with the sample and the coefficients using the MR signals and the predetermined set of coil magnetic field basis vectors.Type: GrantFiled: September 25, 2020Date of Patent: September 28, 2021Assignee: Q Bio, Inc.Inventors: Jorge Fernandez Villena, Stamatios Lefkimmiatis, Athanasios Polymeridis, Doruk Tayli
-
Patent number: 11085984Abstract: During operation, a system may apply an external magnetic field and an RF pulse sequence to a sample. Then, the system may measure at least a component of a magnetization associated with the sample, such as MR signals of one or more types of nuclei in the sample. Moreover, the system may calculate at least a predicted component of the magnetization for voxels associated with the sample based on the measured component of the magnetization, a forward model, the external magnetic field and the RF pulse sequence. Next, the system may solve an inverse problem by iteratively modifying the parameters associated with the voxels in the forward model until a difference between the predicted component of the magnetization and the measured component of the magnetization is less than a predefined value. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform.Type: GrantFiled: January 7, 2019Date of Patent: August 10, 2021Assignee: Q Bio, Inc.Inventors: Jeffrey H. Kaditz, Athanasios Polymeridis, Jorge Villena
-
Patent number: 11051711Abstract: A plurality of stimulations is transmitted to tissue or other material using one or more transmitters. The plurality of signals associated with the excited tissue and the transmitted stimulations are measured. The measured signals are processed to generate field-related quantities, such as B1+ and/or MR signal maps. Field-related quantities are generated also from simulation, by calculating the one or more incident fields from a simulator model of the one or more transmitters and assuming a given distribution of electrical properties in the tissue or other material. Field-related quantities generated from simulation and experimental procedures are compared to each other. The assumed electrical properties distribution is updated and the procedure is repeated iteratively until the difference between simulated and experimental field-related quantities is smaller than a threshold.Type: GrantFiled: April 21, 2017Date of Patent: July 6, 2021Assignee: New York UniversityInventors: Riccardo Lattanzi, Daniel K. Sodickson, José E. Cruz Serralles, Athanasios Polymeridis, Luca Daniel, Jacob K. White
-
Publication number: 20210096203Abstract: A computer that determines coefficients in a representation of coil sensitivities and MR information associated with a sample is described. During operation, the computer may acquire MR signals associated with a sample from the measurement device. Then, the computer may access a predetermined set of coil magnetic field basis vectors, where weighted superpositions of the predetermined set of coil magnetic field basis vectors using the coefficients represent coil sensitivities of coils in the measurement device, and where the predetermined coil magnetic field basis vectors are solutions to Maxwell's equations. Next, the computer may solve a nonlinear optimization problem for the MR information associated with the sample and the coefficients using the MR signals and the predetermined set of coil magnetic field basis vectors.Type: ApplicationFiled: September 25, 2020Publication date: April 1, 2021Inventors: Jorge Fernandez Villena, Stamatios Lefkimmiatis, Athanasios Polymeridis, Doruk Tayli
-
Publication number: 20200265328Abstract: A system may measure, using a measurement device, a response associated with a sample to an excitation. Then, the system may compute, using the measured response and the excitation as inputs to a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The forward model may simulate response physics occurring within the sample to a given excitation. For example, the forward model may be based on differential or phenomenological equations that approximates the response physics. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output to: a user, another electronic device, a display, and/or a memory.Type: ApplicationFiled: February 15, 2019Publication date: August 20, 2020Applicant: Q Bio, IncInventors: Jeffrey Howard Kaditz, Jorge Fernandez Villena, Athanasios Polymeridis
-
Publication number: 20200264249Abstract: A system may measure, using a measurement device, a response associated with a sample to an excitation. Then, the system may compute, using the measured response and the excitation as inputs to one of an inverse model and a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The forward model may simulate response physics occurring within the sample to a given excitation, and the model parameters may include magnetic susceptibilities of the multiple voxels. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output to: a user, another electronic device, a display, and/or a memory.Type: ApplicationFiled: June 20, 2019Publication date: August 20, 2020Applicant: Q Bio, IncInventors: Doruk Tayli, Stamatis Lefkimmiatis, Athanasios Polymeridis
-
Patent number: 10359486Abstract: During operation, a system may apply a polarizing field and an excitation sequence to a sample. Then, the system may measure a signal associated with the sample for a time duration that is less than a magnitude of a relaxation time associated with the sample. Next, the system may calculate the relaxation time based on a difference between the measured signal and a predicted signal of the sample, where the predicted signal is based on a forward model, the polarizing field and the excitation sequence. After modifying at least one of the polarizing field and the excitation sequence, the aforementioned operations may be repeated until a magnitude of the difference is less than a convergence criterion. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform on the measured signal.Type: GrantFiled: November 28, 2016Date of Patent: July 23, 2019Assignee: Q Bio, Inc.Inventors: Jeffrey Howard Kaditz, Athanasios Polymeridis, Jorge Fernandez Villena, Deepak Ramaswamy, Jacob White
-
Publication number: 20190154783Abstract: During operation, a system may apply an external magnetic field and an RF pulse sequence to a sample. Then, the system may measure at least a component of a magnetization associated with the sample, such as MR signals of one or more types of nuclei in the sample. Moreover, the system may calculate at least a predicted component of the magnetization for voxels associated with the sample based on the measured component of the magnetization, a forward model, the external magnetic field and the RF pulse sequence. Next, the system may solve an inverse problem by iteratively modifying the parameters associated with the voxels in the forward model until a difference between the predicted component of the magnetization and the measured component of the magnetization is less than a predefined value. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform.Type: ApplicationFiled: January 7, 2019Publication date: May 23, 2019Applicant: Q Bio, IncInventors: Jeffrey H. Kaditz, Athanasios Polymeridis, Jorge Villena
-
Patent number: 10222441Abstract: During operation, a system may apply an external magnetic field and an RF pulse sequence to a sample. Then, the system may measure at least a component of a magnetization associated with the sample, such as MR signals of one or more types of nuclei in the sample. Moreover, the system may calculate at least a predicted component of the magnetization for voxels associated with the sample based on the measured component of the magnetization, a forward model, the external magnetic field and the RF pulse sequence. Next, the system may solve an inverse problem by iteratively modifying the parameters associated with the voxels in the forward model until a difference between the predicted component of the magnetization and the measured component of the magnetization is less than a predefined value. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform.Type: GrantFiled: November 28, 2016Date of Patent: March 5, 2019Assignee: Q Bio, Inc.Inventors: Jeffrey Howard Kaditz, Athanasios Polymeridis, Jorge Fernandez Villena