Patents by Inventor Atsuhiro Mori

Atsuhiro Mori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230342530
    Abstract: A data acquisition unit acquires resource usage rate data for each technology of a programmable logic apparatus development toolchain and timing slack information during technology mapping. An inference unit outputs an iterative synthesis parameter for succeeding in place and route from the resource usage rate data for each technology and the timing slack information during the technology mapping that are acquired by the data acquisition unit using a learned model for inferring an iterative synthesis parameter given to the programmable logic apparatus development toolchain for succeeding in the place and route from the resource usage rate data for each technology and the timing slack information during the technology mapping.
    Type: Application
    Filed: June 1, 2021
    Publication date: October 26, 2023
    Applicant: Mitsubishi Electric Corporation
    Inventor: Atsuhiro MORI
  • Patent number: 11364915
    Abstract: In the present invention, when a road surface condition is determined based on information acquired by a camera installed in a vehicle, a route of a host vehicle is predicted and the is determined. A road surface condition determination method and device determines a road surface condition of a predicted route based on information acquired by a camera installed in a host vehicle. A controller predicts a route of the host vehicle by determining a road surface friction coefficient of the predicted route based on information acquired by the camera. The determining of the road surface friction coefficient of the predicted route includes: dividing an ahead-of-vehicle image acquired by the camera in a left-right direction and determining a road surface condition for each of the determination areas, and determining the road surface friction coefficient in the determination areas through which the predicted route will pass.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: June 21, 2022
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takuma Hayashi, Atsuhiro Mori
  • Patent number: 11059483
    Abstract: A vehicle control device includes a sensor, a transfer case and a controller. The sensor detects a yaw rate of a vehicle. The transfer case distributes a drive force from a motive power source to front wheels and rear wheels. The controller determines a road surface friction coefficient to be low upon detecting an absolute value of the yaw rate during forward travel of the vehicle to be equal to or greater than a prescribed value other than zero, determines the road surface friction coefficient to be high upon detecting the absolute value is less than prescribed value, and controls a distribution amount of the transfer case based on a determination result of the road surface friction coefficient.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: July 13, 2021
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori
  • Patent number: 10882529
    Abstract: A vehicle control device includes sensors that detect pulse signals corresponding to rotation of front wheels and of rear wheels of a vehicle, and a controller that increases a count at a rise and a fall of the pulse signals. The controller estimates a road surface friction coefficient based on a time rate of change of a difference between a value counted up using the front wheels and a value counted up using the rear wheels.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: January 5, 2021
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori
  • Publication number: 20200317205
    Abstract: In the present invention, when a road surface condition is determined based on information acquired by a camera installed in a vehicle, a route of a host vehicle is predicted and the is determined. A road surface condition determination method and device determines a road surface condition of a predicted route based on information acquired by a camera installed in a host vehicle. A controller predicts a route of the host vehicle by determining a road surface friction coefficient of the predicted route based on information acquired by the camera. The determining of the road surface friction coefficient of the predicted route includes: dividing an ahead-of-vehicle image acquired by the camera in a left-right direction and determining a road surface condition for each of the determination areas, and determining the road surface friction coefficient in the determination areas through which the predicted route will pass.
    Type: Application
    Filed: December 7, 2017
    Publication date: October 8, 2020
    Inventors: Takuma HAYASHI, Atsuhiro MORI
  • Publication number: 20200231155
    Abstract: A vehicle control device includes sensors that detect pulse signals corresponding to rotation of front wheels and of rear wheels of a vehicle, and a controller that increases a count at a rise and a fall of the pulse signals. The controller estimates a road surface friction coefficient based on a time rate of change of a difference between a value counted up using the front wheels and a value counted up using the rear wheels.
    Type: Application
    Filed: August 16, 2017
    Publication date: July 23, 2020
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI
  • Publication number: 20200207352
    Abstract: A vehicle control device includes a sensor, a transfer case and a controller. The sensor detects a yaw rate of a vehicle. The transfer case distributes a drive force from a motive power source to front wheels and rear wheels. The controller determines a road surface friction coefficient to be low upon detecting an absolute value of the yaw rate during forward travel of the vehicle to be equal to or greater than a prescribed value other than zero, determines the road surface friction coefficient to be high upon detecting the absolute value is less than prescribed value, and controls a distribution amount of the transfer case based on a determination result of the road surface friction coefficient.
    Type: Application
    Filed: October 10, 2017
    Publication date: July 2, 2020
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI
  • Patent number: 10000118
    Abstract: A vehicle clutch control device is provided for switching from a two-wheel drive traveling to a four-wheel drive traveling. The vehicle clutch control device includes a dog clutch that separates a rear wheel drive from a front wheel drive by releasing the dog clutch, an electronically controlled coupling that distributes a driving force of a transverse engine to left and right rear wheels in accordance with a clutch connection capacity, and a four-wheel drive control unit. The four-wheel drive control unit switches the drive mode to one of a disconnect two-wheel drive mode in which the dog clutch and the electronically controlled coupling are released, a connect four-wheel drive mode in which the dog clutch and the electronically controlled coupling are engaged, and a stand-by two-wheel drive mode in which the dog clutch is engaged while the electronically controlled coupling is released.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: June 19, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Patent number: 9981552
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a 4WD control unit that controls the engagement and disengagement of the dog clutch and the friction clutch. The 4WD control unit is switchable between a two-wheel drive mode and a four-wheel drive mode. The 4WD control unit is programmed to control engagement of the dog clutch so that the dog clutch is engaged after the friction clutch is engaged and the dog clutch is synchronized. During engagement of the dog clutch, the 4WD control unit is programmed to reduce a transmission torque of the friction clutch when the dog clutch engagement standby state is detected.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: May 29, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Patent number: 9845006
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a controller that controls the engagement and disengagement of the dog clutch and the friction clutch. In this clutch control device, when there is a request to engage the dog clutch from a disengaged state, the controller, during the engagement control of the friction clutch, first controls the engagement of the friction clutch, monitors the change gradient of the clutch rotational speed difference of the dog clutch and starts engagement of the dog clutch upon determining that the gradient of the clutch rotational speed difference is no longer decreasing.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: December 19, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Patent number: 9821655
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a 4WD control unit that controls the engagement and disengagement of the dog clutch and the friction clutch. The 4WD control unit has as two-wheel drive modes, a disconnected two-wheel drive mode in which the dog clutch and the friction clutch are released, and a standby two-wheel drive mode in which the dog clutch is engaged and the friction clutch is released. The 4WD control unit is programmed to switch to the standby two-wheel drive mode when uphill movement is detected during the disconnected two-wheel drive mode.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: November 21, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Patent number: 9783053
    Abstract: A clutch control device is provided for a 4-wheel drive vehicle. The clutch control device includes a 4WD control unit that controls the engagement and release of a friction clutch and a dog clutch which are arranged separately in the two paths. The 4WD control unit has a synchronization speed control unit, and at a time of transition from a disconnected, two-wheel drive mode, in which the friction clutch and the dog clutch are released, to a connected, four-wheel drive mode, in which the friction clutch and the dog clutch are engaged, the synchronization speed control unit reduces a synchronization speed of the dog clutch more during vehicle deceleration than when the vehicle is not decelerating.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: October 10, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Patent number: 9758038
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a controller that controls the engagement and disengagement of the dog clutch and the friction clutch. In this clutch control device, the four-wheel drive hybrid vehicle includes a disconnected, two-wheel drive mode and a connected, four-wheel drive mode. When a driver's foot is lifted off an accelerator in a low-speed region when the connected, four-wheel drive mode is selected, the 4WD control unit maintains the connected, four-wheel drive mode while the brakes are not depressed, and shifts the mode to the disconnected, two-wheel drive mode when the brakes are depressed.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: September 12, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Publication number: 20170182887
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a 4WD control unit that controls the engagement and disengagement of the dog clutch and the friction clutch. The 4WD control unit is switchable between a two-wheel drive mode and a four-wheel drive mode. The 4WD control unit is programmed to control engagement of the dog clutch so that the dog clutch is engaged after the friction clutch is engaged and the dog clutch is synchronized. During engagement of the dog clutch, the 4WD control unit is programmed to reduce a transmission torque of the friction clutch when the dog clutch engagement standby state is detected.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 29, 2017
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Tetsu TAKAISHI
  • Patent number: 9688142
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a controller that controls the dog clutch and the friction clutch. The controller starts the engagement of the dog clutch, after placing the dog clutch in a rotationally synchronized state by engaging the friction clutch and increasing an output rotation thereof, when there is a request to engage the dog clutch. In this clutch control device, the controller sets the engagement start timing of the friction clutch when a transition is made to the connected, four-wheel drive mode to an earlier timing compared to when a transition is made to the standby two-wheel drive mode, when there is a request to engage the dog clutch while in a state in which the disconnected, two-wheel drive mode is selected.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: June 27, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi Ogawa, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Tetsu Takaishi
  • Patent number: 9688141
    Abstract: A clutch control device is provided for a four-wheel drive vehicle. The clutch control device is able to suppress the elevation of the temperature of the oil supplied to a friction clutch during two-wheel drive travel when the friction clutch is released. The clutch control device includes a dog clutch and an electronic control coupling. The friction clutch is housed in a coupling case. When the dog clutch and the friction clutch are released, a two-wheel drive mode is selected. The coupling case has a passage opening that is closed to retain lubrication oil in an oil chamber with respect to a clutch chamber that houses the friction clutch. When oil stirring conditions are met thereafter, the passage opening is opened and the lubrication oil is allowed to flow into the clutch chamber from the oil chamber.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: June 27, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tetsu Takaishi, Atsuhiro Mori, Shunichi Mitsuishi, Makoto Morita, Katsuyoshi Ogawa
  • Publication number: 20170166052
    Abstract: A clutch control device is provided for a 4-wheel drive vehicle. The clutch control device includes a 4WD control unit that controls the engagement and release of a friction clutch and a dog clutch which are arranged separately in the two paths. The 4WD control unit has a synchronization speed control unit, and at a time of transition from a disconnected, two-wheel drive mode, in which the friction clutch and the dog clutch are released, to a connected, four-wheel drive mode, in which the friction clutch and the dog clutch are engaged, the synchronization speed control unit reduces a synchronization speed of the dog clutch more during vehicle deceleration than when the vehicle is not decelerating.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 15, 2017
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Tetsu TAKAISHI
  • Publication number: 20170166053
    Abstract: A clutch control device is provided for a four-wheel drive vehicle for transmitting drive force to the rear wheels. The clutch control device includes a dog clutch and a friction clutch, and a 4WD control unit that controls the engagement and disengagement of the dog clutch and the friction clutch. The 4WD control unit has as two-wheel drive modes, a disconnected two-wheel drive mode in which the dog clutch and the friction clutch are released, and a standby two-wheel drive mode in which the dog clutch is engaged and the friction clutch is released. The 4WD control unit is programmed to switch to the standby two-wheel drive mode when uphill movement is detected during the disconnected two-wheel drive mode.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 15, 2017
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Tetsu TAKAISHI
  • Publication number: 20170028843
    Abstract: A vehicle clutch control device is provided for switching from a two-wheel drive traveling to a four-wheel drive traveling. The vehicle clutch control device includes a dog clutch that separates a rear wheel drive from a front wheel drive by releasing the dog clutch, an electronically controlled coupling that distributes a driving force of a transverse engine to left and right rear wheels in accordance with a clutch connection capacity, and a four-wheel drive control unit. The four-wheel drive control unit switches the drive mode to one of a disconnect two-wheel drive mode in which the dog clutch and the electronically controlled coupling are released, a connect four-wheel drive mode in which the dog clutch and the electronically controlled coupling are engaged, and a stand-by two-wheel drive mode in which the dog clutch is engaged while the electronically controlled coupling is released.
    Type: Application
    Filed: March 30, 2015
    Publication date: February 2, 2017
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Katsuyoshi OGAWA, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Tetsu TAKAISHI
  • Publication number: 20170008396
    Abstract: A clutch control device is provided for a four-wheel drive vehicle. The clutch control device is able to suppress the elevation of the temperature of the oil supplied to a friction clutch during two-wheel drive travel when the friction clutch is released. The clutch control device includes a dog clutch and an electronic control coupling. The friction clutch is housed in a coupling case. When the dog clutch and the friction clutch are released, a two-wheel drive mode is selected. The coupling case has a passage opening that is closed to retain lubrication oil in an oil chamber with respect to a clutch chamber that houses the friction clutch. When oil stirring conditions are met thereafter, the passage opening is opened and the lubrication oil is allowed to flow into the clutch chamber from the oil chamber.
    Type: Application
    Filed: February 4, 2015
    Publication date: January 12, 2017
    Inventors: Tetsu TAKAISHI, Atsuhiro MORI, Shunichi MITSUISHI, Makoto MORITA, Katsuyoshi OGAWA