Patents by Inventor Atsushi Ebara

Atsushi Ebara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210078081
    Abstract: There is provided a silver powder which has a small average particle diameter and a small thermal shrinkage percentage, and a method for producing the same. While a molten metal of silver heated to a temperature (1292 to 1692° C.), which is higher than the melting point (962° C.) of silver by 330 to 730° C., is allowed to drop, a high-pressure water is sprayed onto the molten metal of silver (preferably at a water pressure of 90 to 160 MPa) to rapidly cool and solidify the molten metal of silver to powderize silver to produce a silver powder which has an average particle diameter of 1 to 6 ?m and a shrinkage percentage of not greater than 8% (preferably not greater than 7%) at 500° C., the product of the average particle diameter by the shrinkage percentage at 500° C. being 1 to 11 ?m·% (preferably 1.5 to 10.5 ?m·%).
    Type: Application
    Filed: November 2, 2020
    Publication date: March 18, 2021
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Atsushi Ebara, Kenichi Inoue, Yoshiyuki Michiaki, Takahiro Yamada, Masahiro Yoshida
  • Patent number: 10828702
    Abstract: There is provided a silver powder which has a small average particle diameter and a small thermal shrinkage percentage, and a method for producing the same. While a molten metal of silver heated to a temperature (1292 to 1692° C.), which is higher than the melting point (962° C.) of silver by 330 to 730° C., is allowed to drop, a high-pressure water is sprayed onto the molten metal of silver (preferably at a water pressure of 90 to 160 MPa) to rapidly cool and solidify the molten metal of silver to powderize silver to produce a silver powder which has an average particle diameter of 1 to 6 ?m and a shrinkage percentage of not greater than 8% (preferably not greater than 7%) at 500° C., the product of the average particle diameter by the shrinkage percentage at 500° C. being 1 to 11 ?m·% (preferably 1.5 to 10.5 ?m·%).
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: November 10, 2020
    Assignee: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Atsushi Ebara, Kenichi Inoue, Yoshiyuki Michiaki, Takahiro Yamada, Masahiro Yoshida
  • Patent number: 10773311
    Abstract: An object of the present invention is to provide a phosphorus-containing copper powder with good volume resistivity and a small carbon content by suppressing an oxygen content to a relatively low value even if a particle size is made small, and a method for producing the same. In the phosphorus-containing copper powder containing phosphorus, a ratio of an oxygen content (wt. %) to a BET specific surface area (m2/g) (oxygen content/BET specific surface area) is 0.90 wt. %·g/m2 or less, a divalent copper compound is present on a surface of particles constituting the phosphorus-containing copper powder, a carbon content is 0.10 wt. % or less, and D50 is 7.11 ?m or less.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: September 15, 2020
    Assignee: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Kenichi Inoue, Atsushi Ebara, Masahiro Yoshida, Kyoso Masuda, Takahiro Yamada, Shinichi Uchiyama
  • Publication number: 20200122236
    Abstract: There are provided an inexpensive copper powder, which has a low content of oxygen even it has a small particle diameter and which has a high shrinkage starting temperature when it is heated, and a method for producing the same. While a molten metal of copper heated to a temperature, which is higher than the melting point of copper by 250 to 700° C. (preferably 350 to 650° C. and more preferably 450 to 600° C.), is allowed to drop, a high-pressure water is sprayed onto the heated molten metal of copper in a non-oxidizing atmosphere (such as an atmosphere of nitrogen, argon, hydrogen or carbon monoxide) to rapidly cool and solidify the heated molten metal of copper to produce a copper powder which has an average particle diameter of 1 to 10 ?m and a crystallite diameter Dx(200) of not less than 40 nm on (200) plane thereof, the content of oxygen in the copper powder being 0.7% by weight or less.
    Type: Application
    Filed: December 21, 2017
    Publication date: April 23, 2020
    Applicant: Dowa Electronics Materials Co., Ltd.
    Inventors: Masahiro Yoshida, Kenichi Inoue, Atsushi Ebara, Yoshiyuki Michiaki, Takahiro Yamada
  • Patent number: 10458004
    Abstract: To provide a silver-bismuth powder, which includes: silver; and bismuth, wherein a mass ratio (silver:bismuth) of the silver to the bismuth is 95:5 to 40:60, wherein a cumulative 50% point of particle diameter (D50) of the silver-bismuth powder in a volume-based particle size distribution thereof as measured by a laser diffraction particle size distribution analysis is 0.1 ?m to 10 ?m, and wherein an oxygen content of the silver-bismuth powder is 5.5% by mass or less.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: October 29, 2019
    Assignee: DOWA Electronics Materials Co., Ltd.
    Inventors: Kozo Ogi, Kenichi Inoue, Atsushi Ebara, Akihiro Asano, Hideyuki Fujimoto, Takahiro Yamada
  • Publication number: 20190194778
    Abstract: An object of the present invention is to provide metal powder that can be used to form an external electrode, which is excellent in solder wettability and solder leach resistance while having a layer structure with fewer layers than in the related art and, furthermore, is excellent in electrical conductivity. This silver-coated alloy powder comprises a coating layer on a surface of an alloy core particle containing copper, nickel, zinc, and inevitable impurities, the coating layer containing silver.
    Type: Application
    Filed: August 31, 2017
    Publication date: June 27, 2019
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Kyoso MASUDA, Kenichi INOUE, Yuki KANESHIRO, Atsushi EBARA, Yoshiyuki MICHIAKI, Kozo OGI, Takahiro YAMADA, Masahiro YOSHIDA
  • Publication number: 20180326497
    Abstract: There is provided a silver powder which has a small average particle diameter and a small thermal shrinkage percentage, and a method for producing the same. While a molten metal of silver heated to a temperature (1292 to 1692° C.), which is higher than the melting point (962° C.) of silver by 330 to 730° C., is allowed to drop, a high-pressure water is sprayed onto the molten metal of silver (preferably at a water pressure of 90 to 160 MPa) to rapidly cool and solidify the molten metal of silver to powderize silver to produce a silver powder which has an average particle diameter of 1 to 6 ?m and a shrinkage percentage of not greater than 8% (preferably not greater than 7%) at 500° C., the product of the average particle diameter by the shrinkage percentage at 500° C. being 1 to 11 ?m·% (preferably 1.5 to 10.5 ?m·%).
    Type: Application
    Filed: October 26, 2016
    Publication date: November 15, 2018
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Atsushi Ebara, Kenichi Inoue, Yoshiyuki Michiaki, Takahiro Yamada, Masahiro Yoshida
  • Publication number: 20180243831
    Abstract: An object of the present invention is to provide a phosphorus-containing copper powder with good volume resistivity and a small carbon content by suppressing an oxygen content to a relatively low value even if a particle size is made small, and a method for producing the same. In the phosphorus-containing copper powder containing phosphorus, a ratio of an oxygen content (wt. %) to a BET specific surface area (m2/g) (oxygen content/BET specific surface area) is 0.90 wt. %·g/m2 or less, a divalent copper compound is present on a surface of particles constituting the phosphorus-containing copper powder, a carbon content is 0.10 wt. % or less, and D50 is 7.11 ?m or less.
    Type: Application
    Filed: August 18, 2016
    Publication date: August 30, 2018
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Kenichi INOUE, Atsushi EBARA, Masahiro YOSHIDA, Kyoso MASUDA, Takahiro YAMADA, Shinichi UCHIYAMA
  • Patent number: 10062473
    Abstract: A silver-coated copper alloy powder, which has a low volume resistivity and excellent storage stability (reliability), is produced by coating a copper alloy powder, which has a chemical composition comprising 1 to 50 wt % of at least one of nickel and zinc and the balance being copper and unavoidable impurities (preferably a copper alloy powder wherein a particle diameter (D50 diameter) corresponding to 50% of accumulation in cumulative distribution of the copper alloy powder, which is measured by a laser diffraction particle size analyzer, is 0.1 to 15 ?m), with 7 to 50 wt % of a silver containing layer, preferably a layer of silver or an silver compound.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: August 28, 2018
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Kenichi Inoue, Kozo Ogi, Atsushi Ebara, Yuto Hiyama, Takahiro Yamada, Toshihiko Ueyama
  • Publication number: 20160040271
    Abstract: To provide a silver-bismuth powder, which includes: silver; and bismuth, wherein a mass ratio (silver:bismuth) of the silver to the bismuth is 95:5 to 40:60, wherein a cumulative 50% point of particle diameter (D50) of the silver-bismuth powder in a volume-based particle size distribution thereof as measured by a laser diffraction particle size distribution analysis is 0.1 ?m to 10 ?m, and wherein an oxygen content of the silver-bismuth powder is 5.5% by mass or less.
    Type: Application
    Filed: October 21, 2015
    Publication date: February 11, 2016
    Inventors: Kozo OGI, Kenichi INOUE, Atsushi EBARA, Akihiro ASANO, Hideyuki FUJIMOTO, Takahiro YAMADA
  • Publication number: 20140346413
    Abstract: A silver-coated copper alloy powder, which has a low volume resistivity and excellent storage stability (reliability), is produced by coating a copper alloy powder, which has a chemical composition comprising 1 to 50 wt % of at least one of nickel and zinc and the balance being copper and unavoidable impurities (preferably a copper alloy powder wherein a particle diameter (D50 diameter) corresponding to 50% of accumulation in cumulative distribution of the copper alloy powder, which is measured by a laser diffraction particle size analyzer, is 0.1 to 15 ?m), with 7 to 50 wt % of a silver containing layer, preferably a layer of silver or an silver compound.
    Type: Application
    Filed: January 15, 2013
    Publication date: November 27, 2014
    Inventors: Kenichi Inoue, Kozo Ogi, Atsushi Ebara, Yuto Hiyama, Takahiro Yamada, Toshihiko Ueyama
  • Patent number: 7919847
    Abstract: A semiconductor wafer includes a plurality of chip areas, a scribe line area, a bonding pad, a probing pad, and a pad connection wiring. The plurality of chip areas are configured to be arranged in a matrix form. The scribe line area is configured to separate the plurality of chip areas from each other. The bonding pad is configured to be connected with an external terminal. The probing pad is configured to be contacted with a probe wire. The pad connection wiring is configured to electrically connect the bonding pad to the probing pad. The bonding pad and the probing pad are located at a predetermined distance from each other in each of the plurality of chip areas. The pad connection wiring has a portion located in the scribe line area.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: April 5, 2011
    Assignee: Ricoh Company, Ltd.
    Inventor: Atsushi Ebara
  • Publication number: 20080210935
    Abstract: A semiconductor wafer includes a plurality of chip areas, a scribe line area, a bonding pad, a probing pad, and a pad connection wiring. The plurality of chip areas are configured to be arranged in a matrix form. The scribe line area is configured to separate the plurality of chip areas from each other. The bonding pad is configured to be connected with an external terminal. The probing pad is configured to be contacted with a probe wire. The pad connection wiring is configured to electrically connect the bonding pad to the probing pad. The bonding pad and the probing pad are located at a predetermined distance from each other in each of the plurality of chip areas. The pad connection wiring has a portion located in the scribe line area.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 4, 2008
    Inventor: Atsushi Ebara
  • Patent number: 7393586
    Abstract: A highly oxidation-resistant copper powder for conductive paste, which is a copper powder containing not more than 5 wt % of Si, is characterized in that substantially all of the Si is adhered to the surfaces of the copper particles as SiO2-system gel coating film.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: July 1, 2008
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Yoshihiro Okada, Atsushi Ebara
  • Publication number: 20060008704
    Abstract: There are provided a zinc alloy powder for an alkaline cell, which is capable of decreasing the volume of hydrogen gas generated before and after the discharge of the cell to prevent an electrolyte in the cell from leaking, and a method for producing such a zinc alloy powder by heat-treating the powder in a short time. A zinc alloy powder consisting essentially of 0.0001 to 0.500 wt % of at least one element selected from the group consisting of aluminum, indium, gallium, thallium, magnesium, calcium, strontium, cadmium, tin and lead, 0.001 to 0.050 wt % of bismuth, and the balance being zinc and unavoidable impurities, is heat-treated at a higher temperature than 250° C. in an inert gas or reducing gas atmosphere.
    Type: Application
    Filed: June 23, 2005
    Publication date: January 12, 2006
    Inventors: Atsushi Ebara, Toshiya Kitamura
  • Patent number: 6858885
    Abstract: A protection circuit for use in a semiconductor apparatus includes a first conductivity type semiconductor substrate, a second conductivity type first diffusion region formed on the semiconductor substrate, and a second conductivity type second diffusion region formed on the semiconductor substrate. The second diffusion region is distanced at a prescribed interval from the first diffusion region. The first diffusion region is electrically connected to a pad for electrically connecting the semiconductor apparatus to an outside region. The second diffusion region is electrically connected to a power supply voltage. At least a portion of each of the first and second diffusion regions is entirely formed right under a pad area having the pad.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: February 22, 2005
    Assignee: Ricoh Company, Ltd.
    Inventor: Atsushi Ebara
  • Publication number: 20030223164
    Abstract: A protection circuit for use in a semiconductor apparatus includes a first conductivity type semiconductor substrate, a second conductivity type first diffusion region formed on the semiconductor substrate, and a second conductivity type second diffusion region formed on the semiconductor substrate. The second diffusion region is distanced at a prescribed interval from the first diffusion region. The first diffusion region is electrically connected to a pad for electrically connecting the semiconductor apparatus to an outside region. The second diffusion region is electrically connected to a power supply voltage. At least a portion of each of the first and second diffusion regions is entirely formed right under a pad area having the pad.
    Type: Application
    Filed: March 28, 2003
    Publication date: December 4, 2003
    Inventor: Atsushi Ebara
  • Publication number: 20030178604
    Abstract: A highly oxidation-resistant copper powder for conductive paste, which is a copper powder containing not more than 5 wt % of Si, is characterized in that substantially all of the Si is adhered to the surfaces of the copper particles as SiO2-system gel coating film.
    Type: Application
    Filed: May 8, 2003
    Publication date: September 25, 2003
    Inventors: Yoshihiro Okada, Atsushi Ebara