Patents by Inventor Atsushi Yoshimi

Atsushi Yoshimi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200284444
    Abstract: A pipe unit allows refrigerant to divide or merge and includes: branch pipes; and a main pipe. The pipe unit is connected to a connection pipe, and the pipe unit and the connection pipe together form a liquid-side refrigerant channel between an outdoor unit and indoor units. The main pipe communicates with each of the branch pipes, forms a channel through which the refrigerant flows to or from each of the branch pipes, and is disposed, in an installed state, on an outdoor unit side of the branch pipes in the liquid-side refrigerant channel. The main pipe includes a first part that extends in a first direction, at least one of the branch pipes includes a second part that extends in a second direction intersecting the first direction, the first direction is horizontal in the installed state, and the second direction is vertical in the installed state.
    Type: Application
    Filed: September 25, 2018
    Publication date: September 10, 2020
    Inventors: Tetsuya SHIRASAKI, Atsushi YOSHIMI
  • Publication number: 20200256598
    Abstract: An air-conditioning system that performs a refrigeration cycle in a refrigerant circuit, includes: an outdoor unit; a plurality of indoor units; and a connection pipe disposed between the outdoor unit and the indoor units and that forms at least a refrigerant passage through which refrigerant in a gas-liquid two-phase state flows. The connection pipe includes: a branch portion that includes an indoor-side pipe group including indoor-side pipes that each communicates with any one of the indoor units, and diverges refrigerant flowing from the outdoor unit side; and a trap portion disposed in at least any one of the indoor-side pipes and is filled with refrigerant in a gas state.
    Type: Application
    Filed: July 20, 2018
    Publication date: August 13, 2020
    Inventors: Tetsuya SHIRASAKI, Atsushi YOSHIMI
  • Patent number: 9249997
    Abstract: A refrigeration apparatus includes a compression mechanism, a heat source-side heat exchanger, a usage-side heat exchanger, an intercooler, an intercooler bypass tube and an intake return tube. The compression mechanism has a plurality of compression elements configured so that refrigerant discharged from a first-stage compression element is sequentially compressed by a second-stage compression element. The intercooler is connected to an intermediate refrigerant tube configured to draw refrigerant discharged from the first-stage compression element into the second-stage compression element to cool the refrigerant discharged from the first-stage compression element and drawn into the second-stage compression element. The intercooler bypass tube is connected to the intermediate refrigerant tube so as to bypass the intercooler.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: February 2, 2016
    Assignee: Daikin Industries, Ltd.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi
  • Patent number: 9038212
    Abstract: The transfer assistance device includes a front supporting part that supports the torso of the person being assisted; a set of sub supporting parts configured to be adjustable in position with respect to the front supporting part; a driving unit that propels and drives each of the set of sub supporting parts toward the person being assisted being supported by the front supporting part; a force sensor that detects a pressure proportional to propulsion of the sub supporting part by the driving unit and counterforce generated by contact of the sub supporting part with the person being assisted; and a computer that controls the driving unit based on the pressure detected by the force sensor so that tightening force on the person being assisted by the sub supporting part approaches prescribed tightening force.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: May 26, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuhei Yamaguchi, Atsushi Yoshimi
  • Patent number: 8959951
    Abstract: A refrigerating apparatus, where refrigerant reaches a supercritical state in at least part of a refrigeration cycle, includes at least one expansion mechanism, an evaporator connected to the expansion mechanism, first and second sequential compression elements, a radiator connected to the discharge side of the second compression element, a first refrigerant pipe interconnecting the radiator and the expansion mechanism, a heat exchanger arranged to cause heat exchange between the first refrigerant pipe and another refrigerant pipe. Preferably, a heat exchanger switching mechanism is switchable so that refrigerant flows in the first refrigerant pipe through the first heat exchanger or in a heat exchange bypass pipe connected to the first refrigerant pipe.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: February 24, 2015
    Assignee: Daikin Industries, Ltd.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi, Takahiro Yamaguchi, Toru Inazuka, Kazuhiro Furusho, Mitsuharu Uchida, Hidehiko Kataoka
  • Patent number: 8863545
    Abstract: A refrigeration apparatus includes a multi-stage compression mechanism, heat source-side and usage side heat exchangers each operable as a radiator/evaporator, a switching mechanism switchable between cooling and heating operation states, a second-stage injection tube, an intermediate heat exchanger and an intermediate heat exchanger bypass tube. The intermediate heat exchanger bypass tube ensures that refrigerant discharged from the first-stage compression element and drawn into the second-stage compression element is not cooled by the intermediate heat exchanger during a heating operation. Injection rate optimization controls a flow rate of refrigerant returned to the second-stage compression element through the second-stage injection tube so that an injection ratio is greater during the heating operation than during a cooling operation.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: October 21, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi
  • Patent number: 8844300
    Abstract: A method is disclosed that makes it possible to reduce the amount of refrigerant used and shorten the amount of time over which the new air conditioner must be run in a refrigerant pipe washing mode when an air conditioner that used a mineral-oil-based refrigerant oil is updated to or replaced with an air conditioner using an HFC refrigerant as the working refrigerant and the existing refrigerant piping is reused as is. Thus, the existing refrigerant piping of the air conditioner that used a mineral-oil-based refrigerant oil is reused in the air conditioner that uses an HFC refrigerant as the working refrigerant, the by washing the refrigerant piping using a cleaning agent comprising an HFC refrigerant containing at least 40 wt % of R32 to remove residual refrigerant oil in the refrigerant piping.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: September 30, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Kazuhide Mizutani, Hiromune Matsuoka, Atsushi Yoshimi, Manabu Yoshimi
  • Publication number: 20130263374
    Abstract: The transfer assistance device includes a front supporting part that supports the torso of the person being assisted; a set of sub supporting parts configured to be adjustable in position with respect to the front supporting part; a driving unit that propels and drives each of the set of sub supporting parts toward the person being assisted being supported by the front supporting part; a force sensor that detects a pressure proportional to propulsion of the sub supporting part by the driving unit and counterforce generated by contact of the sub supporting part with the person being assisted; and a computer that controls the driving unit based on the pressure detected by the force sensor so that tightening force on the person being assisted by the sub supporting part approaches prescribed tightening force.
    Type: Application
    Filed: December 28, 2010
    Publication date: October 10, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuhei Yamaguchi, Atsushi Yoshimi
  • Patent number: 8387411
    Abstract: An air-conditioning apparatus uses carbon dioxide as a refrigerant, and includes a two-stage-compression-type compression mechanism, a heat source-side heat exchanger, an expansion mechanism, a usage-side heat exchanger, and an intercooler. The intercooler uses air as a heat source. The intercooler is configured and arranged to cool refrigerant flowing through an intermediate refrigerant tube that draws refrigerant discharged from the first-stage compression element into the second-stage compression element. The intercooler is integrated with the heat source-side heat exchanger to form an integrated heat exchanger, with the intercooler disposed in an upper part of the integrated heat exchanger.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: March 5, 2013
    Assignee: Daikin Industries, Ltd.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi, Yoshio Ueno, Ryusuke Fujiyoshi, Toshiyuki Kurihara, Shun Yoshioka
  • Patent number: 8356490
    Abstract: A refrigeration apparatus uses a refrigerant that operates in a supercritical range. The refrigeration apparatus includes a compression mechanism, a heat source-side heat exchanger, an expansion mechanism, a usage-side heat exchanger, a switching mechanism, an intercooler which functions as a cooler of refrigerant discharged from a first-stage compression element of the compression mechanism and drawn into a second-stage compression element of the compression mechanism, and an intercooler bypass tube. The switching mechanism is configured to switch between cooling and heating operation states in which refrigerant is circulated differently. When a defrosting operation for defrosting the heat source-side heat exchanger is performed, refrigerant flows to the heat source-side heat exchanger and the intercooler. After defrosting of the intercooler is detected as being complete, the intercooler bypass tube is used to ensure that the refrigerant does not flow to the intercooler.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 22, 2013
    Assignee: Daikin Industries, Ltd.
    Inventors: Atsushi Yoshimi, Shuji Fujimoto
  • Patent number: 8327661
    Abstract: A refrigeration apparatus uses a refrigerant that operates in a region including critical processes, and includes a compression mechanism having first and second compressors, a heat-source-side heat exchanger, an expansion mechanism, a utilization-side heat exchanger, an intercooler, and an intermediate refrigerant pipe. The first compressor has a first low-pressure compression element and a first high-pressure compression element to increase pressure of refrigerant more than the first low-pressure compression element. The second compressor has a second low-pressure compression element and a second high-pressure compression element to increase pressure of refrigerant more than the second low-pressure compression element. The intermediate refrigerant pipe causes refrigerant discharged by the first and second low-pressure compression elements to pass through the intercooler and be sucked into first and second high-pressure the compression elements.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: December 11, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi
  • Patent number: 8327662
    Abstract: A refrigeration apparatus uses a refrigerant that operates in a supercritical range. The refrigeration apparatus includes a compression mechanism, a heat source-side heat exchanger, an expansion mechanism, a usage-side heat exchanger, a switching mechanism, an intercooler, a bypass tube, and an injection tube. The switching mechanism is configured to switch between cooling and heating operation states. When the switching mechanism is switched to the cooling operation state to allow refrigerant to flow to the heat source-side heat exchanger and a reverse cycle defrosting operation for defrosting the heat source-side heat exchanger is performed, the refrigerant is caused to flow to the heat source-side heat exchanger, the intercooler and the injection tube. After the defrosting of the intercooler is detected as being complete, the bypass tube is used so as to ensure that the refrigerant does not flow to the intercooler and the injection valve is controlled so that the opening degree is increased.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: December 11, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Atsushi Yoshimi, Shuji Fujimoto
  • Patent number: 8181480
    Abstract: A refrigeration device includes a compression mechanism, a radiator, a first expansion mechanism, a second expansion mechanism, an evaporator, a first internal heat exchanger, a branch pipe a third expansion mechanism, and a second internal heat exchanger. The first internal heat exchanger causes heat to be exchanged between refrigerant that flows from the radiator to the inflow side of the first expansion mechanism, and refrigerant that flows from the evaporator to the compression mechanism. The branch pipe branches from a third refrigerant pipe for connecting the radiator and the second expansion mechanism, and merges with the second refrigerant pipe. A third expansion mechanism is provided to the branch pipe. The second internal heat exchanger causes heat to be exchanged between refrigerant that flows out from the first expansion mechanism, and refrigerant that flows out from the third expansion mechanism.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: May 22, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Shinichi Kasahara, Toshiyuki Kurihara, Shuuji Fujimoto, Takahiro Yamaguchi, Atsushi Yoshimi, Yoshio Ueno
  • Publication number: 20120000237
    Abstract: A heat pump system includes a heat pump circuit, a heat load circuit, first and second heat exchangers, a flow rate adjustment element, and a controller. The heat pump circuit circulates primary refrigerant through a low and high stage-side compression elements, an expansion element and an evaporator. The heat load circuit circulates a first fluid and has a first and second branching portions, first and second branching channels, and a heat-load-processing section. The first and second heat exchangers perform heat exchange between the primary refrigerant and the first fluid. Flow rate of the first fluid in the first and/or second branching channel is adjustable. The controller performs flow rate adjustment control so as to maintain a state in which a predetermined temperature condition is satisfied, or to reduce a difference between the temperature of the first fluid flowing through portions of the first and second branching channels.
    Type: Application
    Filed: March 10, 2010
    Publication date: January 5, 2012
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takuro Yamada, Noriyuki Okuda, Shuji Fujimoto, Atsushi Yoshimi
  • Patent number: 7918106
    Abstract: A refrigerant circuit (15) is provided with a low-pressure stage oil separator (26) for separating refrigerating machine oil out of refrigerant discharged from a low-pressure stage compressor (21) and returning it to the suction side of the low-pressure stage compressor (21), and a high-pressure stage oil separator (36) for separating refrigerating machine oil out of refrigerant discharged from a high-pressure stage compressor (31) and returning it to the suction side of the high-pressure stage compressor (31). The efficiency of oil separation of the low-pressure stage oil separator (26) is set lower than that of the high-pressure stage oil separator (36).
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: April 5, 2011
    Assignee: Daikin Industries, Ltd.
    Inventors: Shuuji Fujimoto, Atsushi Yoshimi
  • Publication number: 20110048055
    Abstract: A refrigeration apparatus includes a multi-stage compression mechanism, heat source-side and usage side heat exchangers each operable as a radiator/evaporator, a switching mechanism switchable between cooling and heating operation states, a second-stage injection tube, an intermediate heat exchanger and an intermediate heat exchanger bypass tube. The intermediate heat exchanger bypass tube ensures that refrigerant discharged from the first-stage compression element and drawn into the second-stage compression element is not cooled by the intermediate heat exchanger during a heating operation. Injection rate optimization controls a flow rate of refrigerant returned to the second-stage compression element through the second-stage injection tube so that an injection ratio is greater during the heating operation than during a cooling operation.
    Type: Application
    Filed: April 30, 2009
    Publication date: March 3, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi
  • Publication number: 20110036119
    Abstract: A refrigerating apparatus, where refrigerant reaches a supercritical state in at least part of a refrigeration cycle, includes at least one expansion mechanism, an evaporator connected to the expansion mechanism, first and second sequential compression elements, a radiator connected to the discharge side of the second compression element, a first refrigerant pipe interconnecting the radiator and the expansion mechanism, a heat exchanger arranged to cause heat exchange between the first refrigerant pipe and another refrigerant pipe. Preferably, a heat exchanger switching mechanism is switchable so that refrigerant flows in the first refrigerant pipe through the first heat exchanger or in a heat exchange bypass pipe connected to the first refrigerant pipe.
    Type: Application
    Filed: April 30, 2009
    Publication date: February 17, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi, Takahiro Yamaguchi, Toru Inazuka, Kazuhiro Furusho, Mitsuharu Uchida, Hidehiko Kataoka
  • Publication number: 20110036110
    Abstract: A refrigeration apparatus performs heat exchange on a water tube system having a water inlet tube leading exterior water to a water branching point, first and second branching water tubes extending from the water branching point, and a water outlet tube leading to the exterior from a convergent point of the first and second branching water tubes. Active refrigerant is in a supercritical state in at least part of a refrigeration cycle. The refrigeration apparatus includes a main expansion mechanism connected to an evaporator, first and second compression elements connected by a first refrigerant tube, a first heat exchanger exchanging heat between the first refrigerant tube and the first branching water tubes, second refrigerant tubes connecting the second compression element and the main expansion mechanism, and a second heat exchanger in which the second refrigerant tubes exchange heat with the second branching water tubes and does not exchange heat with the water inlet tube.
    Type: Application
    Filed: April 28, 2009
    Publication date: February 17, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi, Takahiro Yamaguchi, Tooru Inazuka, Kazuhiro Furusho, Mitsuharu Uchida, Hidehiko Kataoka
  • Publication number: 20110030409
    Abstract: A refrigeration apparatus uses supercritical range refrigerant, and includes a multi-stage compression mechanism, a heat source-side heat exchanger, a usage-side heat exchanger, a switching mechanism switchable between cooling and heating operation states, an intermediate heat exchanger integrated with the heat source-side heat exchanger, and an intermediate heat exchanger bypass tube connected to the intermediate refrigerant tube so as to bypass the intermediate heat exchanger. The intermediate heat exchanger is connected to an intermediate refrigerant tube to draw refrigerant discharged from the first-stage compression element into the second-stage compression element, and functions as a cooler of the refrigerant discharged from the first-stage compression element and drawn into the second-stage compression element. The intermediate heat exchanger bypass tube ensures that refrigerant does not flow to the intermediate heat exchanger when a reverse cycle defrosting operation is performed.
    Type: Application
    Filed: April 20, 2009
    Publication date: February 10, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi
  • Publication number: 20110030407
    Abstract: A refrigeration apparatus uses supercritical range refrigerant, and includes a multi-stage compression mechanism, a heat source-side heat exchanger, a usage-side heat exchanger, a switching mechanism switchable between cooling and heating operation states, and a second-stage injection tube. The second-stage injection tube branches off refrigerant, which has radiated heat in the heat source-side heat exchanger or the usage-side heat exchanger, and returns the refrigerant to the second-stage compression element. Refrigerant is prevented from returning to the second-stage compression element through the second-stage injection tube at least during a beginning of a reverse cycle defrosting operation, which is performed to defrost the heat source-side heat exchanger by switching the switching mechanism to the cooling operation state.
    Type: Application
    Filed: April 20, 2009
    Publication date: February 10, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Atsushi Yoshimi, Shuji Fujimoto