Patents by Inventor Austin K. Russell

Austin K. Russell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180284225
    Abstract: To compensate for motor dynamics in a scanner in a lidar system, a light source transmits light pulses at a variable pulse rate in accordance with a scan speed of the scanner. More specifically, the pulse rate may be directly related to the scan speed so that the light source transmits light pulses uniformly across a field of regard. A controller may determine the scan speed and provide a control signal to the light source adjusting the pulse rate accordingly.
    Type: Application
    Filed: January 22, 2018
    Publication date: October 4, 2018
    Inventors: Matthew D. Weed, Scott R. Campbell, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell, Rodger W. Cleye, Melvin L. Stauffer
  • Publication number: 20180284226
    Abstract: To detect an atmospheric condition at the current location of a lidar system, a receiver in the lidar system detects a return light pulse scattered by a target and analyzes the characteristics of the return light pulse. The characteristics of the return light pulse include a rise time, a fall time, a duration, a peak power, an amount of energy, etc. When the rise time, fall time, and/or duration exceed respective thresholds, the lidar system detects the atmospheric condition such as fog, sleet, snow, rain, dust, smog, exhaust, or insects. In response to detecting the atmospheric condition, the lidar system adjusts the characteristics of subsequent pulses to compensate for attenuation or distortion of return light pulses due to the atmospheric condition. For example, the lidar system adjusts the peak power, pulse energy, pulse duration, inter-pulse-train spacing, number of pulses, or any other suitable characteristic.
    Type: Application
    Filed: March 1, 2018
    Publication date: October 4, 2018
    Inventors: Joseph G. LaChapelle, Matthew D. Weed, Scott R. Campbell, Jason M. Eichenholz, Austin K. Russell, Lane A. Martin
  • Publication number: 20180284244
    Abstract: To dynamically control power in a lidar system, a controller identifies a triggering event and provides a control signal to a light source in the lidar system adjusting the power of light pulses provided by the light pulse. Triggering events may include exceeding a threshold speed, being within a threshold distance of a person or other object, an atmospheric condition, etc. In some scenarios, the power is adjusted to address eye-safety concerns.
    Type: Application
    Filed: November 28, 2017
    Publication date: October 4, 2018
    Inventors: Austin K. Russell, Jason M. Eichenholz, Laurance S. Lingvay
  • Publication number: 20180284224
    Abstract: To compensate for the uneven distribution of data points around the periphery of a vehicle in a lidar system, a light source transmits light pulses at a variable pulse rate according to the orientation of the light pulses with respect to the lidar system. A controller may communicate with a scanner in the lidar system that provides the orientations of the light pulses to the controller. The controller may then provide a control signal to the light source adjusting the pulse rate based on the orientations of the light pulses. For example, the pulse rate may be slower near the front of the lidar system and faster near the periphery. In another example, the pulse rate may be faster near the front of the lidar system and slower near the periphery.
    Type: Application
    Filed: January 22, 2018
    Publication date: October 4, 2018
    Inventors: Matthew D. Weed, Scott R. Campbell, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell
  • Publication number: 20180284780
    Abstract: To compensate for the effects of vibration on a lidar system in a vehicle, a vibration sensor within the lidar system and/or the vehicle detects vibration, such as a gyroscope, accelerometer, inertial measurement unit (IMU), etc. The detected vibration is then used to generate a compensation signal. The compensation signal is combined with a drive signal that drives a scanner configured to direct light pulses across a field of regard. The combined signal is provided to the scanner, and accordingly, the light pulses are accurately directed across the field of regard.
    Type: Application
    Filed: March 8, 2018
    Publication date: October 4, 2018
    Inventors: John E. McWhirter, Jason M. Eichenholz, Austin K. Russell
  • Publication number: 20180284231
    Abstract: To decrease the likelihood of a false detection when detecting light from light pulses scattered by remote targets in a lidar system, a receiver in the lidar system includes a photodetector and a pulse-detection circuit having a gain circuit with a varying amount of gain over time. The gain circuit operates in a low-gain mode for a time period T1 beginning with time t0 when a light pulse is emitted to prevent the receiver from detecting return light pulses during the threshold time period T1. Upon expiration of the threshold time period T1, the gain circuit operates in a high-gain mode to begin detecting return light pulses until a subsequent light pulse is emitted.
    Type: Application
    Filed: January 3, 2018
    Publication date: October 4, 2018
    Inventors: Austin K. Russell, Joseph G. LaChapelle, Scott R. Campbell, Jason M. Eichenholz
  • Publication number: 20180284278
    Abstract: To increase the effective pulse rate of a light source in a lidar system, a controller provides control signals to the light source to transmit a light pulse once the previous light pulse has been received. The controller may communicate with a receiver in the lidar system that detects received light signals. In response to detecting a received light signal, the receiver may provide an indication of the received light signal to the controller which may in turn provide a control signal to the light source to transmit the next light pulse. The receiver may also provide characteristics of the received light signal to the controller, such as the peak power for the received light signal, the average power for the received light signal, the pulse duration of the received light signal, etc. Then the controller may analyze the characteristics to determine whether to transmit another light pulse.
    Type: Application
    Filed: December 18, 2017
    Publication date: October 4, 2018
    Inventors: Austin K. Russell, Matthew D. Weed, Liam J. McGregor, Lane A. Martin, Jason M. Eichenholz
  • Publication number: 20180284279
    Abstract: A lidar system includes a transmitter that encodes successive transmit pulses with different pulse characteristics and a receiver that detects the pulse characteristics of each received (scattered or reflected) pulse and that distinguishes between the received pulses based on the detected pulse characteristics. The lidar system thus resolves range ambiguities by encoding pulses of scan positions in the same or different scan periods to have different pulse characteristics, such as different pulse widths or different pulse envelope shapes. The receiver includes a pulse decoder configured to detect the relevant pulse characteristics of the received pulse and a resolver that determines if the pulse characteristics of the received pulse matches the pulse characteristics of the current scan position or that of a previous scan position.
    Type: Application
    Filed: March 10, 2018
    Publication date: October 4, 2018
    Inventors: Scott R. Campbell, Joseph G. LaChapelle, Jason M. Eichenholz, Austin K. Russell
  • Patent number: 10088559
    Abstract: To compensate for motor dynamics in a scanner in a lidar system, a light source transmits light pulses at a variable pulse rate in accordance with a scan speed of the scanner. More specifically, the pulse rate may be directly related to the scan speed so that the light source transmits light pulses uniformly across a field of regard. A controller may determine the scan speed and provide a control signal to the light source adjusting the pulse rate accordingly.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: October 2, 2018
    Assignee: LUMINAR TECHNOLOGIES, INC.
    Inventors: Matthew D. Weed, Scott R. Campbell, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell, Rodger W. Cleye, Melvin L. Stauffer
  • Patent number: 10012732
    Abstract: A lidar system with a pulsed laser diode to produce a plurality of optical seed pulses of light at one or more operating wavelengths between approximately 1400 nm and approximately 1600 nm. The lidar system may also include one or more optical amplifiers to amplify the optical seed pulses to produce a plurality of output optical pulses. Each optical amplifier may produce an amount of amplified spontaneous emission (ASE), and the output optical pulses may have characteristics comprising: a pulse repetition frequency of less than or equal to 100 MHz; a pulse duration of less than or equal to 20 nanoseconds; and a duty cycle of less than or equal to 1%. The lidar system may also include one or more optical filters to attenuate the ASE and a receiver to detect at least a portion of the output optical pulses scattered by a target located a distance.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: July 3, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Publication number: 20180120433
    Abstract: A lidar system with a pulsed laser diode to produce a plurality of optical seed pulses of light at one or more operating wavelengths between approximately 1400 nm and approximately 1600 nm. The lidar system may also include one or more optical amplifiers to amplify the optical seed pulses to produce a plurality of output optical pulses. Each optical amplifier may produce an amount of amplified spontaneous emission (ASE), and the output optical pulses may have characteristics comprising: a pulse repetition frequency of less than or equal to 100 MHz; a pulse duration of less than or equal to 20 nanoseconds; and a duty cycle of less than or equal to 1%. The lidar system may also include one or more optical filters to attenuate the ASE and a receiver to detect at least a portion of the output optical pulses scattered by a target located a distance.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 3, 2018
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Patent number: 9958545
    Abstract: A lidar system with a light source to emit a pulse of light and a receiver to detect a return pulse of light. The receiver can include a first channel to receive a first portion of the return pulse and produce a first digital output signal, and a second channel to receive a second portion of the return pulse and produce a second digital output signal. The receiver can include a logic circuit to produce an output electrical-edge signal in response to receiving the digital output signals. The receiver can also include a time-to-digital converter to determine a time interval based on an emission time of the pulse of light and based on the electrical-edge signal. The lidar system can also include a processor to determine a distance to a target based at least in part on the time interval.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: May 1, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Publication number: 20180088236
    Abstract: A lidar system with a light source to emit a pulse of light and a receiver to detect a return pulse of light. The receiver can include a first channel to receive a first portion of the return pulse and produce a first digital output signal, and a second channel to receive a second portion of the return pulse and produce a second digital output signal. The receiver can include a logic circuit to produce an output electrical-edge signal in response to receiving the digital output signals. The receiver can also include a time-to-digital converter to determine a time interval based on an emission time of the pulse of light and based on the electrical-edge signal. The lidar system can also include a processor to determine a distance to a target based at least in part on the time interval.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 29, 2018
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Publication number: 20180024241
    Abstract: A lidar system with a pulsed laser diode configured to produce an optical seed pulse of light at an operating wavelength between approximately 1400 nm and approximately 1600 nm. The lidar system may also include an optical amplifier configured to amplify the optical seed pulse to produce an eye-safe output optical pulse that is emitted into a field of view. The optical amplifier may produce an amount of amplified spontaneous emission (ASE) associated with the output optical pulse. The lidar system may include an optical filter configured to filter the output optical pulse to reduce the associated ASE. The lidar system may also include a receiver configured to detect at least a portion of the output optical pulse reflected or scattered from the field of view.
    Type: Application
    Filed: March 27, 2017
    Publication date: January 25, 2018
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Patent number: 9874635
    Abstract: A lidar system having a light source to emit an output beam and an overlap mirror having a reflecting surface with an aperture through which the output beam passes. The lidar system may include mirrors driven by a galvanometer scanner, a resonant scanner, a microelectromechanical systems device, or a voice coil motor. The mirrors may direct the output beam toward a light source field of view (FOV) and may move the light source FOV to different locations within a field of regard. The mirrors may receive reflected portions of the output beam as an input beam and direct the input beam toward the reflecting surface of the overlap mirror. The lidar system may include a receiver to receive the input beam from the reflecting surface of the overlap mirror. The receiver may have a receiver FOV that moves synchronously with, and at least partially overlaps, the light source FOV.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: January 23, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Patent number: 9857468
    Abstract: A lidar system with a pulsed laser diode configured to produce an optical seed pulse of light at an operating wavelength between approximately 1400 nm and approximately 1600 nm. The lidar system may also include an optical amplifier configured to amplify the optical seed pulse to produce an eye-safe output optical pulse that is emitted into a field of view. The optical amplifier may produce an amount of amplified spontaneous emission (ASE) associated with the output optical pulse. The lidar system may include an optical filter configured to filter the output optical pulse to reduce the associated ASE. The lidar system may also include a receiver configured to detect at least a portion of the output optical pulse reflected or scattered from the field of view.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: January 2, 2018
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Patent number: 9823353
    Abstract: A lidar system with a light source to emit a pulse of light into a field of view and a receiver to detect a return pulse of light which is reflected or scattered by a target in the field of view. The receiver may include an avalanche photodiode to generate an electrical-current pulse corresponding to the return pulse and a transimpedance amplifier to produce a voltage pulse that corresponds to the electrical-current pulse. A voltage amplifier may amplify the voltage pulse and a comparator may produce an edge signal when the amplified voltage pulse exceeds a threshold. A time-to-digital converter may determine a time interval based on an emission time of the pulse of light and based on the edge signal. A processor may determine a distance to the target using the time interval.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: November 21, 2017
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin
  • Publication number: 20170299721
    Abstract: A lidar system with a light source to emit a pulse of light into a field of view and a receiver to detect a return pulse of light which is reflected or scattered by a target in the field of view. The receiver may include an avalanche photodiode to generate an electrical-current pulse corresponding to the return pulse and a transimpedance amplifier to produce a voltage pulse that corresponds to the electrical-current pulse. A voltage amplifier may amplify the voltage pulse and a comparator may produce an edge signal when the amplified voltage pulse exceeds a threshold. A time-to-digital converter may determine a time interval based on an emission time of the pulse of light and based on the edge signal. A processor may determine a distance to the target using the time interval.
    Type: Application
    Filed: March 27, 2017
    Publication date: October 19, 2017
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin