CONTROLLING PULSE TIMING TO COMPENSATE FOR MOTOR DYNAMICS

To compensate for motor dynamics in a scanner in a lidar system, a light source transmits light pulses at a variable pulse rate in accordance with a scan speed of the scanner. More specifically, the pulse rate may be directly related to the scan speed so that the light source transmits light pulses uniformly across a field of regard. A controller may determine the scan speed and provide a control signal to the light source adjusting the pulse rate accordingly.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to provisional U.S. application Ser. No. 62/478,258, filed on Mar. 29, 2017, entitled “Controlling Pulse Timing To Compensate for Motor Dynamics” the entire disclosure of which is hereby expressly incorporated by reference herein.

FIELD OF TECHNOLOGY

This disclosure generally relates to lidar systems and, more particularly, to varying the pulse rate at which light pulses are transmitted in the lidar system.

BACKGROUND

The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.

Light detection and ranging (lidar) is a technology that can be used to measure distances to remote targets. Typically, a lidar system includes a light source and an optical receiver. The light source can be, for example, a laser which emits light having a particular operating wavelength. The operating wavelength of a lidar system may lie, for example, in the infrared, visible, or ultraviolet portions of the electromagnetic spectrum. The light source emits light toward a target which then scatters the light. Some of the scattered light is received back at the receiver. The system determines the distance to the target based on one or more characteristics associated with the returned light. For example, the system may determine the distance to the target based on the time of flight of a returned light pulse.

SUMMARY

One example embodiment of the techniques of this disclosure is a method of controlling pulse rate in lidar systems in which a scanner scans in a forward-scanning direction and a reverse-scanning direction, to compensate for motor dynamics of the scanner. The method includes generating light pulses by a light source in a lidar system and scanning, by a scanner in the lidar system, a field of view of the light source across a field of regard of the lidar system in a forward-scanning direction and a reverse-scanning direction, including: directing the light pulses toward different points within the field of regard and decreasing a scan speed of the scanner as the scanner changes direction between the forward-scanning direction and the reverse-scanning direction at respective turnaround points. The method further includes setting a pulse rate at which the lidar system generates the light pulses in accordance with the scan speed, including transmitting the light pulses at a first pulse rate for a first scan speed and at a second pulse rate for a second scan speed and detecting, by a receiver of the lidar system, light from the light pulses scattered by one or more remote targets to generate respective pixels.

Another example embodiment of the techniques of this disclosure is a lidar system including a light source configured to emit light pulses and a scanner configured to scan a field of view of the light source across a field of regard of the lidar system in a forward-scanning direction and a reverse-scanning direction. More specifically, the scanner is configured to direct the light pulses toward different points within the field of regard and decrease a scan speed as the scanner changes direction between the forward-scanning direction and the reverse-scanning direction at respective turnaround points. The lidar system further includes a controller configured to adjust a pulse rate at which the light pulses are emitted by the light source, including when the scanner scan at a first scan speed, the controller causes the light source to emit the light pulses at a first pulse rate. When the scanner scans at a second scan speed, the controller causes the light source to emit the light pulses at a second pulse rate. Additionally, the lidar system includes a detector configured to detect light from some of the light pulses scattered by one or more remote targets to generate respective pixels.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example light detection and ranging (lidar) system in which the techniques of this disclosure can be implemented;

FIG. 2 illustrates in more detail several components that can operate in the system of FIG. 1;

FIG. 3 illustrates an example configuration in which the components of FIG. 1 scan a 360-degree field of regard through a window in a rotating housing;

FIG. 4 illustrates another configuration in which the components of FIG. 1 scan a 360-degree field of regard through a substantially transparent stationary housing;

FIG. 5 illustrates an example scan pattern which the lidar system of FIG. 1 can produce when identifying targets within a field of regard;

FIG. 6 illustrates an example scan pattern which the lidar system of FIG. 1 can produce when identifying targets within a field of regard using multiple beams;

FIG. 7 schematically illustrates fields of view (FOVs) of a light source and a detector that can operate in the lidar system of FIG. 1;

FIG. 8 illustrates an example configuration of the lidar system of FIG. 1 or another suitable lidar system, in which a laser is disposed away from sensor components;

FIG. 9 illustrates an example vehicle in which the lidar system of FIG. 1 can operate;

FIG. 10 illustrates an example InGaAs avalanche photodiode which can operate in the lidar system of FIG. 1;

FIG. 11 illustrates an example photodiode coupled to a pulse-detection circuit, which can operate in the lidar system of FIG. 1;

FIG. 12 is a timing diagram of an example technique for transmitting light pulses upon detection of return pulses, which can be implemented in the lidar system of FIG. 1;

FIG. 13 illustrates an example technique for varying the pulse rate in accordance with the orientation of transmitted light pulses with respect to a vehicle, which can operate in the lidar system of FIG. 1;

FIG. 14 illustrates another example technique for varying the pulse rate in accordance with the orientation of transmitted light pulses with respect to a vehicle, which can be implemented in the lidar system of FIG. 1;

FIG. 15 illustrates another example technique for varying the pulse rate in accordance with a scan speed of a scanner that can operate in the lidar system of FIG. 1; and

FIG. 16 illustrates a flow diagram of an example method for varying the pulse rate in accordance with the scan speed of the scanner.

DETAILED DESCRIPTION Overview

Generally speaking, a light source (e.g., a fiber laser or a laser diode) in a lidar system transmits light pulses at a variable pulse rate in view of various conditions and/or events. One technique includes operating the light source so that after transmitting light pulse N, the light source transmits subsequent light pulse N+1 upon detecting a return light pulse that corresponds to the light pulse N, or upon expiration of the time period during which a light pulse can travel to a target at a maximum supported distance and back. In this manner, the effective pulse rate for the light source may be faster than a fixed pulse rate selected based on the time it takes a light pulse to travel to a target at the maximum range (e.g., 200 m) and return to the lidar system. For example, the fixed pulse rate may be about 750 kHz to allow for approximately 1.33 μs time of flight to a target at 200 m and back. The effective or average pulse rate may be significantly faster when some of the light pulses return from targets much closer than 200 m away (e.g., 5 m away), and new light pulses are transmitted in response.

In an example implementation, a controller is communicatively coupled to the light source that transmits light pulses as well as to a receiver that detects return light pulses scattered by remote targets. For example, a pulse-detection circuit at the receiver may generate an indication that a return pulse has been received when a voltage of incoming light exceeds a certain threshold.

The receiver may determine one or more of the peak power for the return light pulse, the average power for the return light pulse, the pulse energy of the return light pulse, the pulse duration of the return light pulse, or any other measurable characteristics of the return light pulse. The receiver then may provide an appropriate indication of the detected characteristics of the return light pulse to the controller.

Next, the controller may compare the peak power, average power, or pulse energy of the return light pulse to a power or energy threshold to determine whether the return light pulse corresponds to an emitted light pulse scattered by a soft target or a hard target. In some implementations, the controller may combine the peak or average power, pulse energy, and the pulse duration in any suitable manner (e.g., by determining a ratio between the peak power and the pulse duration) and compare the combined metric to a combined threshold.

When the return light pulse exceeds the power or energy threshold and/or the combined threshold, the controller may provide a control signal to the light source to transmit another light pulse. This process may be repeated before transmitting each light pulse.

In some implementations, the pulse rate varies according to the orientation of the beam with respect to the vehicle. For example, under certain conditions, targets within a field of regard of the lidar system are more likely to be closer to the middle of the field of regard than to the periphery. Additionally, the lidar system in some cases may be more concerned with objects directly in front of the vehicle or the lidar system than objects not directly in front of the vehicle or the lidar system (e.g., to better avoid accidents). To compensate for the uneven distribution of data points, the lidar system in this implementation transmits light pulses at a variable pulse rate such that the pulse rate is slower when scanning at orientations near the front of the vehicle or the lidar system and faster at the periphery of the field of regard.

In this manner, the lidar system may increase the power and range farther directly in front of the vehicle or the lidar system and then decrease the power and corresponding range as the lidar system scans toward the sides. For example, directly in front of the lidar system, the lidar system may range 200 m whereas at an orientation near the periphery (e.g., ±60 degrees from the front of the lidar system), the lidar system may range 50 m. Additionally, by increasing the pulse rate around the periphery, the lidar system can collect more data points in areas or portions of the field of regard where there are fewer targets than the number of targets directly in front of the lidar system. The number of targets in a region or portion of a field of regard may be referred to herein as “information density.” For example, the information density may be high directly in front of the vehicle where there are several vehicles, road signs, and other objects. Information density may be low around the periphery of the vehicle where other vehicles are less likely to be present. In some scenarios, the lidar system may increase the pulse rate thereby increasing the resolution and pixel density in areas where information density is low to identify small objects in such areas where objects are sparsely located. Additionally, the pulse rate may be increased to conserve power or energy in these areas where the lidar system is unlikely to identify objects near a maximum range and/or unlikely to approach such objects. Still further, the pulse rate may be increased around the periphery based on an upcoming vehicle maneuver such as a lane charge or turn. For example, when the vehicle is about to make a left turn, the lidar system may increase the pulse rate near the left side of the vehicle to more clearly identify objects in an area that the vehicle is approaching.

In some implementations, the controller identifies the orientations at which the light pulses are transmitted by processing the corresponding signal from the scanner, for example. The controller may provide control signals to the light source to increase the pulse rate as the angle defining the orientation increases. In some implementations, the controller may compare the orientation angle to a threshold orientation angle. Then the controller may provide a control signal to the light source to adjust the pulse rate when the orientation angle rises above (or falls below) a threshold orientation angle. For example, at zero degrees relative to the line along which the vehicle is currently moving, the pulse rate may be 750 kHz to allow for a 1.33 μs time of flight to reach a target at a maximum range of 200 m. Then, when the orientation angle exceeds a first threshold orientation angle with respect to the vehicle (e.g., 30 degrees), the pulse rate may increase to a second pulse rate (1.5 MHz). The lidar system accordingly may decrease the power for the light pulses, as the faster pulse rate may not allow for the light pulses to reach targets at the maximum range. Then, when the orientation exceeds a second threshold orientation with respect to the vehicle (e.g., 45 degrees), the pulse rate may increase to a third pulse rate, and so on. In some implementations, the controller determines the threshold orientations. The threshold orientations may be static and predetermined or may be dynamically set by the controller. For example, a threshold orientation may be determined based on point cloud data from a previous scan line or scan frame. In another example, the controller may set a threshold orientation according to an upcoming vehicle maneuver such as a lane charge or turn. For example, when the vehicle is about to make a left turn, the controller may set a threshold orientation near the left side of the lidar system (e.g., when the lidar system is positioned in front of the vehicle) to increase the pulse rate near the left side of the vehicle to more clearly identify objects in an area that the vehicle is approaching. Still further, the controller may set the threshold orientation based on road conditions, visibility due to fog, snow, or rain, for example, or based on any other suitable condition to adjust the pulse rate above or below the threshold orientation.

In other implementations, the lidar system increases the pulse rate when the beam scans areas ahead of the vehicle or the lidar system and decreases the pulse rate when the beam scans areas near the periphery of the field of regard, i.e., not directly ahead of the vehicle or the lidar system. The resolution or pixel density thus is higher for the areas directly ahead of the vehicle, in these implementations. By increasing the pulse rate when scanning directly ahead of the vehicle, the lidar system can collect more data points when information density is higher. In some scenarios, the lidar system may increase the resolution when information density is higher to pinpoint each of the objects in an area where the objects are densely located. Additionally, the lidar system may increase the pulse rate in this area to more clearly identify objects in an area that the vehicle is approaching.

In some implementations, the lidar system includes two or more light sources, each scanning in opposite directions with respect to the direction directly ahead of the vehicle (e.g., from 0 degrees to 60 degrees and from 0 degrees to −60 degrees). In this manner, the horizontal field of regard may double compared to a lidar system having one light source that scans across a 60-degree horizontal field of regard. In some scenarios, the two-light source implementation doubles the resolution when compared to a lidar system having one light source that scans across a 120-degree horizontal field of regard. In other implementations, the two or more light sources scan in the same direction and are offset by a predetermined phase angle. For example, two light sources may be phased apart by 60 degrees, such that one light source scans back and forth from 0 degrees to 60 degrees and the other light source scans back and forth from −60 degrees to 0 degrees in the same scanning direction as the first light source. In some implementations, the lidar system includes one light source, and the pulses of light emitted by the light source are split to produce two or more output beams which are scanned by two or more respective scanners.

Further, a lidar system may adjust the pulse rate in accordance with the scan speed of a scanner to compensate for motor dynamics at the scanner. More specifically, a lidar system operating in a vehicle may include a scanner that scans in the forward-scanning and reverse-scanning directions. The forward and reverse-scanning directions may be substantially horizontal scanning directions, such that the forward-scanning direction is to the right and the reverse-scanning direction is to the left (or vice versa). Furthermore, the forward and reverse-scanning directions may be substantially vertical scanning directions, such that the forward-scanning direction is up and the reverse-scanning direction is down (or vice versa). Additionally, the forward and reverse-scanning directions may be scanning directions having any suitable combination of horizontal and vertical components. In any event, as the scanner changes directions, the scan speed may decrease as the field of view of the light source approaches the peripheries. Motor dynamics may refer to the movement (e.g., speed or velocity) or change in movement (e.g., acceleration) of a scanning mirror or a motor that drives a scanning mirror. In an example implementation, the lidar system includes two or more scan heads (also referred to above as sensor heads), each concurrently scanning in opposite directions with respect to the front of the lidar system (e.g., from 0 degrees to 60 degrees and from 0 degrees to −60 degrees). In another example implementation, the scan heads concurrently scan in the same direction with respect to the front of the lidar system. When one of the light sources approaches 0 degrees or 60 degrees, the scanner may slow down from 50 to 60 degrees and then speed up from 60 degrees on its way back to 50 degrees, for example.

To compensate for these motor dynamics, the lidar system in some implementations transmits light pulses at a variable pulse rate such that the pulse rate relates to the scan speed (e.g., the pulse rate decreases when the scan speed decreases and the pulse rate increases when the scan speed increases). In this manner, the light source transmits light pulses uniformly across the field of regard. The lidar system accordingly may adjust the power or energy, because a faster pulse rate may not allow for the light pulses to reach targets at the maximum range.

In some implementations, a controller may determine the scan speed and provide control signals to the light source to decrease the pulse rate as the scan speed decreases and increase the pulse rate as the scan speed increases. In some implementations, the controller may compare the scan speed to a threshold speed. Then the controller may provide a control signal to the light source to adjust the pulse rate when the scan speed increases above or decreases below the threshold speed. For example, at a first scan speed the pulse rate may be 600 kHz. Then, when the scan speed exceeds a threshold speed, the pulse rate may increase to a second pulse rate of 750 kHz. As the scanner approaches the periphery and is about to change directions the scan speed may drop below the threshold speed and accordingly the pulse rate may decrease back to the first pulse rate of 600 kHz.

In some implementations, the lidar system may include two or more light sources each concurrently scanning in opposite directions with respect to the direction directly in front of or orthogonal to the lidar system (e.g., from 0 degrees to 60 degrees and from 0 degrees to −60 degrees). In other implementations, the two or more light sources concurrently scan in the same direction and are offset by a predetermined phase angle to illuminate different portions of the field of regard. For example, two light sources may be phased apart by 60 degrees, such that one light source scans back and forth from 0 degrees to 60 degrees and the other light source scans back and forth from −60 degrees to 0 degrees in the same scanning direction as the first light source. In this manner, each light source may change directions at 0 degrees and at ±60 degrees with respect to the vehicle. The lidar system may increase the pulse rate or keep the pulse rate the same as one of the light sources approaches 0 degrees to increase the resolution or pixel density near the front of the lidar system. Then the lidar system may reduce the pulse rate as the light source approaches the periphery (e.g. ±60 degrees) to compensate for the slower scan speed. In any event, the lidar system may adjust the pulse rate based on a combination of the scan speed and orientations of the light pulses. In other implementations, the lidar system includes one light source, and the pulses of light emitted by the light source are split to produce two or more output beams which are scanned by two or more respective scanners.

In yet other implementations, the lidar system may include a single light source and may decrease the pulse rate as the light source approaches ±60 degrees with respect to the front of the lidar system.

An example lidar system in which these techniques can be implemented is considered next with reference to FIGS. 1-4, followed by a discussion of the techniques which the lidar system can implement to scan a field of regard and generate individual pixels (FIGS. 5-7). An example implementation in a vehicle is then discussed with reference to FIGS. 8 and 9. Then, an example photo detector and an example pulse-detection circuit are discussed with reference to FIGS. 10 and 11.

System Overview

FIG. 1 illustrates an example light detection and ranging (lidar) system 100. The lidar system 100 may be referred to as a laser ranging system, a laser radar system, a LIDAR system, a lidar sensor, or a laser detection and ranging (LADAR or ladar) system. The lidar system 100 may include a light source 110, a mirror 115, a scanner 120, a receiver 140, and a controller 150. The light source 110 may be, for example, a laser which emits light having a particular operating wavelength in the infrared, visible, or ultraviolet portions of the electromagnetic spectrum. As a more specific example, the light source 110 may include a laser with an operating wavelength between approximately 1.2 μm and 1.7 μm.

In operation, the light source 110 emits an output beam of light 125 which may be continuous-wave, pulsed, or modulated in any suitable manner for a given application. The output beam of light 125 is directed downrange toward a remote target 130 located a distance D from the lidar system 100 and at least partially contained within a field of regard of the system 100. Depending on the scenario and/or the implementation of the lidar system 100, D can be between 1 m and 1 km, for example.

Once the output beam 125 reaches the downrange target 130, the target 130 may scatter or, in some cases, reflect at least a portion of light from the output beam 125, and some of the scattered or reflected light may return toward the lidar system 100. In the example of FIG. 1, the scattered or reflected light is represented by input beam 135, which passes through the scanner 120, which may be referred to as a beam scanner, optical scanner, or laser scanner. The input beam 135 passes through the scanner 120 to the mirror 115, which may be referred to as an overlap mirror, superposition mirror, or beam-combiner mirror. The mirror 115 in turn directs the input beam 135 to the receiver 140. The input 135 may contain only a relatively small fraction of the light from the output beam 125. For example, the ratio of average power, peak power, or pulse energy of the input beam 135 to average power, peak power, or pulse energy of the output beam 125 may be approximately 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9, 10−11, 10−11, or 10−12. As another example, if a pulse of the output beam 125 has a pulse energy of 1 microjoule (μJ), then the pulse energy of a corresponding pulse of the input beam 135 may have a pulse energy of approximately 10 nanojoules (nJ), 1 nJ, 100 picojoules (pJ), 10 pJ, 1 pJ, 100 femtojoules (fJ), 10 fJ, 1 fJ, 100 attojoules (aJ), 10 aJ, or 1 aJ.

The output beam 125 may be referred to as a laser beam, light beam, optical beam, emitted beam, or just beam; and the input beam 135 may be referred to as a return beam, received beam, return light, received light, input light, scattered light, or reflected light. As used herein, scattered light may refer to light that is scattered or reflected by the target 130. The input beam 135 may include light from the output beam 125 that is scattered by the target 130, light from the output beam 125 that is reflected by the target 130, or a combination of scattered and reflected light from target 130.

The operating wavelength of a lidar system 100 may lie, for example, in the infrared, visible, or ultraviolet portions of the electromagnetic spectrum. The Sun also produces light in these wavelength ranges, and thus sunlight can act as background noise which can obscure signal light detected by the lidar system 100. This solar background noise can result in false-positive detections or can otherwise corrupt measurements of the lidar system 100, especially when the receiver 140 includes SPAD detectors (which can be highly sensitive).

Generally speaking, the light from the Sun that passes through the Earth's atmosphere and reaches a terrestrial-based lidar system such as the system 100 can establish an optical background noise floor for this system. Thus, in order for a signal from the lidar system 100 to be detectable, the signal must rise above the background noise floor. It is generally possible to increase the signal-to-noise (SNR) ratio of the lidar system 100 by raising the power level of the output beam 125, but in some situations it may be desirable to keep the power level of the output beam 125 relatively low. For example, increasing transmit power levels of the output beam 125 can result in the lidar system 100 not being eye-safe.

In some implementations, the lidar system 100 operates at one or more wavelengths between approximately 1400 nm and approximately 1600 nm. For example, the light source 110 may produce light at approximately 1550 nm.

In some implementations, the lidar system 100 operates at frequencies at which atmospheric absorption is relatively low. For example, the lidar system 100 can operate at wavelengths in the approximate ranges from 980 nm to 1110 nm or from 1165 nm to 1400 nm.

In other implementations, the lidar system 100 operates at frequencies at which atmospheric absorption is high. For example, the lidar system 100 can operate at wavelengths in the approximate ranges from 930 nm to 980 nm, from 1100 nm to 1165 nm, or from 1400 nm to 1460 nm.

According to some implementations, the lidar system 100 can include an eye-safe laser, or the lidar system 100 can be classified as an eye-safe laser system or laser product. An eye-safe laser, laser system, or laser product may refer to a system with an emission wavelength, average power, peak power, peak intensity, pulse energy, beam size, beam divergence, exposure time, or scanned output beam such that emitted light from the system presents little or no possibility of causing damage to a person's eyes. For example, the light source 110 or lidar system 100 may be classified as a Class 1 laser product (as specified by the 60825-1 standard of the International Electrotechnical Commission (IEC)) or a Class I laser product (as specified by Title 21, Section 1040.10 of the United States Code of Federal Regulations (CFR)) that is safe under all conditions of normal use. In some implementations, the lidar system 100 may be classified as an eye-safe laser product (e.g., with a Class 1 or Class I classification) configured to operate at any suitable wavelength between approximately 1400 nm and approximately 2100 nm. In some implementations, the light source 110 may include a laser with an operating wavelength between approximately 1400 nm and approximately 1600 nm, and the lidar system 100 may be operated in an eye-safe manner. In some implementations, the light source 110 or the lidar system 100 may be an eye-safe laser product that includes a scanned laser with an operating wavelength between approximately 1530 nm and approximately 1560 nm. In some implementations, the lidar system 100 may be a Class 1 or Class I laser product that includes a fiber laser or solid-state laser with an operating wavelength between approximately 1400 nm and approximately 1600 nm.

The receiver 140 may receive or detect photons from the input beam 135 and generate one or more representative signals. For example, the receiver 140 may generate an output electrical signal 145 that is representative of the input beam 135. The receiver may send the electrical signal 145 to the controller 150. Depending on the implementation, the controller 150 may include one or more processors, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), and/or other suitable circuitry configured to analyze one or more characteristics of the electrical signal 145 to determine one or more characteristics of the target 130, such as its distance downrange from the lidar system 100. More particularly, the controller 150 may analyze the time of flight or phase modulation for the beam of light 125 transmitted by the light source 110. If the lidar system 100 measures a time of flight of T (e.g., T represents a round-trip time of flight for an emitted pulse of light to travel from the lidar system 100 to the target 130 and back to the lidar system 100), then the distance D from the target 130 to the lidar system 100 may be expressed as D=c·T/2, where c is the speed of light (approximately 3.0×108 m/s).

As a more specific example, if the lidar system 100 measures the time of flight to be T=300 ns, then the lidar system 100 can determine the distance from the target 130 to the lidar system 100 to be approximately D=45.0 m. As another example, the lidar system 100 measures the time of flight to be T=1.33 μs and accordingly determines that the distance from the target 130 to the lidar system 100 is approximately D=199.5 m. The distance D from lidar system 100 to the target 130 may be referred to as a distance, depth, or range of the target 130. As used herein, the speed of light c refers to the speed of light in any suitable medium, such as for example in air, water, or vacuum. The speed of light in vacuum is approximately 2.9979×108 m/s, and the speed of light in air (which has a refractive index of approximately 1.0003) is approximately 2.9970×108 m/s.

The target 130 may be located a distance D from the lidar system 100 that is less than or equal to a maximum range RMAX of the lidar system 100. The maximum range RMAX (which also may be referred to as a maximum distance) of a lidar system 100 may correspond to the maximum distance over which the lidar system 100 is configured to sense or identify targets that appear in a field of regard of the lidar system 100. The maximum range of lidar system 100 may be any suitable distance, such as for example, 25 m, 50 m, 100 m, 200 m, 500 m, or 1 km. As a specific example, a lidar system with a 200-m maximum range may be configured to sense or identify various targets located up to 200 m away. For a lidar system with a 200-m maximum range (RMAX=200 m), the time of flight corresponding to the maximum range is approximately 2·RMAXc≅1.33 μs.

In some implementations, the light source 110, the scanner 120, and the receiver 140 may be packaged together within a single housing 155, which may be a box, case, or enclosure that holds or contains all or part of a lidar system 100. The housing 155 includes a window 157 through which the beams 125 and 135 pass. In one example implementation, the lidar-system housing 155 contains the light source 110, the overlap mirror 115, the scanner 120, and the receiver 140 of a lidar system 100. The controller 150 may reside within the same housing 155 as the components 110, 120, and 140, or the controller 150 may reside remotely from the housing.

Moreover, in some implementations, the housing 155 includes multiple lidar sensors, each including a respective scanner and a receiver. Depending on the particular implementation, each of the multiple sensors can include a separate light source or a common light source. The multiple sensors can be configured to cover non-overlapping adjacent fields of regard or partially overlapping fields of regard, depending on the implementation.

The housing 155 may be an airtight or watertight structure that prevents water vapor, liquid water, dirt, dust, or other contaminants from getting inside the housing 155. The housing 155 may be filled with a dry or inert gas, such as for example dry air, nitrogen, or argon. The housing 155 may include one or more electrical connections for conveying electrical power or electrical signals to and/or from the housing.

The window 157 may be made from any suitable substrate material, such as for example, glass or plastic (e.g., polycarbonate, acrylic, cyclic-olefin polymer, or cyclic-olefin copolymer). The window 157 may include an interior surface (surface A) and an exterior surface (surface B), and surface A or surface B may include a dielectric coating having particular reflectivity values at particular wavelengths. A dielectric coating (which may be referred to as a thin-film coating, interference coating, or coating) may include one or more thin-film layers of dielectric materials (e.g., SiO2, TiO2, Al2O3, Ta2O5, MgF2, LaF3, or AlF3) having particular thicknesses (e.g., thickness less than 1 μm) and particular refractive indices. A dielectric coating may be deposited onto surface A or surface B of the window 157 using any suitable deposition technique, such as for example, sputtering or electron-beam deposition.

The dielectric coating may have a high reflectivity at a particular wavelength or a low reflectivity at a particular wavelength. A high-reflectivity (HR) dielectric coating may have any suitable reflectivity value (e.g., a reflectivity greater than or equal to 80%, 90%, 95%, or 99%) at any suitable wavelength or combination of wavelengths. A low-reflectivity dielectric coating (which may be referred to as an anti-reflection (AR) coating) may have any suitable reflectivity value (e.g., a reflectivity less than or equal to 5%, 2%, 1%, 0.5%, or 0.2%) at any suitable wavelength or combination of wavelengths. In particular embodiments, a dielectric coating may be a dichroic coating with a particular combination of high or low reflectivity values at particular wavelengths. For example, a dichroic coating may have a reflectivity of less than or equal to 0.5% at approximately 1550-1560 nm and a reflectivity of greater than or equal to 90% at approximately 800-1500 nm.

In some implementations, surface A or surface B has a dielectric coating that is anti-reflecting at an operating wavelength of one or more light sources 110 contained within enclosure 155. An AR coating on surface A and surface B may increase the amount of light at an operating wavelength of light source 110 that is transmitted through the window 157. Additionally, an AR coating at an operating wavelength of the light source 110 may reduce the amount of incident light from output beam 125 that is reflected by the window 157 back into the housing 155. In an example implementation, each of surface A and surface B has an AR coating with reflectivity less than 0.5% at an operating wavelength of light source 110. As an example, if the light source 110 has an operating wavelength of approximately 1550 nm, then surface A and surface B may each have an AR coating with a reflectivity that is less than 0.5% from approximately 1547 nm to approximately 1553 nm. In another implementation, each of surface A and surface B has an AR coating with reflectivity less than 1% at the operating wavelengths of the light source 110. For example, if the housing 155 encloses two sensor heads with respective light sources, the first light source emits pulses at a wavelength of approximately 1535 nm and the second light source emits pulses at a wavelength of approximately 1540 nm, then surface A and surface B may each have an AR coating with reflectivity less than 1% from approximately 1530 nm to approximately 1545 nm.

The window 157 may have an optical transmission that is greater than any suitable value for one or more wavelengths of one or more light sources 110 contained within the housing 155. As an example, the window 157 may have an optical transmission of greater than or equal to 70%, 80%, 90%, 95%, or 99% at a wavelength of light source 110. In one example implementation, the window 157 can transmit greater than or equal to 95% of light at an operating wavelength of the light source 110. In another implementation, the window 157 transmits greater than or equal to 90% of light at the operating wavelengths of the light sources enclosed within the housing 155.

Surface A or surface B may have a dichroic coating that is anti-reflecting at one or more operating wavelengths of one or more light sources 110 and high-reflecting at wavelengths away from the one or more operating wavelengths. For example, surface A may have an AR coating for an operating wavelength of the light source 110, and surface B may have a dichroic coating that is AR at the light-source operating wavelength and HR for wavelengths away from the operating wavelength. A coating that is HR for wavelengths away from a light-source operating wavelength may prevent most incoming light at unwanted wavelengths from being transmitted through the window 117. In one implementation, if light source 110 emits optical pulses with a wavelength of approximately 1550 nm, then surface A may have an AR coating with a reflectivity of less than or equal to 0.5% from approximately 1546 nm to approximately 1554 nm. Additionally, surface B may have a dichroic coating that is AR at approximately 1546-1554 nm and HR (e.g., reflectivity of greater than or equal to 90%) at approximately 800-1500 nm and approximately 1580-1700 nm.

Surface B of the window 157 may include a coating that is oleophobic, hydrophobic, or hydrophilic. A coating that is oleophobic (or, lipophobic) may repel oils (e.g., fingerprint oil or other non-polar material) from the exterior surface (surface B) of the window 157. A coating that is hydrophobic may repel water from the exterior surface. For example, surface B may be coated with a material that is both oleophobic and hydrophobic. A coating that is hydrophilic attracts water so that water may tend to wet and form a film on the hydrophilic surface (rather than forming beads of water as may occur on a hydrophobic surface). If surface B has a hydrophilic coating, then water (e.g., from rain) that lands on surface B may form a film on the surface. The surface film of water may result in less distortion, deflection, or occlusion of an output beam 125 than a surface with a non-hydrophilic coating or a hydrophobic coating.

With continued reference to FIG. 1, the light source 110 may include a pulsed laser configured to produce or emit pulses of light with a certain pulse duration. In an example implementation, the pulse duration or pulse width of the pulsed laser is approximately 10 picoseconds (ps) to 100 nanoseconds (ns). In another implementation, the light source 110 is a pulsed laser that produces pulses with a pulse duration of approximately 1-4 ns. In yet another implementation, the light source 110 is a pulsed laser that produces pulses at a pulse repetition frequency of approximately 100 kHz to 5 MHz or a pulse period (e.g., a time between consecutive pulses) of approximately 200 ns to 10 μs. The light source 110 may have a substantially constant or a variable pulse repetition frequency, depending on the implementation. As an example, the light source 110 may be a pulsed laser that produces pulses at a substantially constant pulse repetition frequency of approximately 640 kHz (e.g., 640,000 pulses per second), corresponding to a pulse period of approximately 1.56 μs. As another example, the light source 110 may have a pulse repetition frequency that can be varied from approximately 500 kHz to 3 MHz. As used herein, a pulse of light may be referred to as an optical pulse, a light pulse, or a pulse, and a pulse repetition frequency may be referred to as a pulse rate.

In general, the output beam 125 may have any suitable average optical power, and the output beam 125 may include optical pulses with any suitable pulse energy or peak optical power. Some examples of the average power of the output beam 125 include the approximate values of 1 mW, 10 mW, 100 mW, 1 W, and 10 W. Example values of pulse energy of the output beam 125 include the approximate values of 0.1 μJ, 1 μJ, 10 μJ, 100 μJ, and 1 mJ. Examples of peak power values of pulses included in the output beam 125 are the approximate values of 10 W, 100 W, 1 kW, 5 kW, 10 kW. An example optical pulse with a duration of 1 ns and a pulse energy of 1 μJ has a peak power of approximately 1 kW. If the pulse repetition frequency is 500 kHz, then the average power of the output beam 125 with 1-μJ pulses is approximately 0.5 W, in this example.

The light source 110 may include a laser diode, such as a Fabry-Perot laser diode, a quantum well laser, a distributed Bragg reflector (DBR) laser, a distributed feedback (DFB) laser, or a vertical-cavity surface-emitting laser (VCSEL). The laser diode operating in the light source 110 may be an aluminum-gallium-arsenide (AlGaAs) laser diode, an indium-gallium-arsenide (InGaAs) laser diode, or an indium-gallium-arsenide-phosphide (InGaAsP) laser diode, or any other suitable diode. In some implementations, the light source 110 includes a pulsed laser diode with a peak emission wavelength of approximately 1400-1600 nm. Further, the light source 110 may include a laser diode that is current-modulated to produce optical pulses.

In some implementations, the light source 110 includes a pulsed laser diode followed by one or more optical-amplification stages. For example, the light source 110 may be a fiber-laser module that includes a current-modulated laser diode with a peak wavelength of approximately 1550 nm, followed by a single-stage or a multi-stage erbium-doped fiber amplifier (EDFA). As another example, the light source 110 may include a continuous-wave (CW) or quasi-CW laser diode followed by an external optical modulator (e.g., an electro-optic modulator), and the output of the modulator may be fed into an optical amplifier. In other implementations, the light source 110 may include a laser diode which produces optical pulses that are not amplified by an optical amplifier. As an example, a laser diode (which may be referred to as a direct emitter or a direct-emitter laser diode) may emit optical pulses that form an output beam 125 that is directed downrange from a lidar system 100. In yet other implementations, the light source 110 may include a pulsed solid-state laser or a pulsed fiber laser.

In some implementations, the output beam of light 125 emitted by the light source 110 is a collimated optical beam with any suitable beam divergence, such as a divergence of approximately 0.1 to 3.0 milliradian (mrad). Divergence of the output beam 125 may refer to an angular measure of an increase in beam size (e.g., a beam radius or beam diameter) as the output beam 125 travels away from the light source 110 or the lidar system 100. The output beam 125 may have a substantially circular cross section with a beam divergence characterized by a single divergence value. For example, the output beam 125 with a circular cross section and a divergence of 1 mrad may have a beam diameter or spot size of approximately 10 cm at a distance of 100 m from the lidar system 100. In some implementations, the output beam 125 may be an astigmatic beam or may have a substantially elliptical cross section and may be characterized by two divergence values. As an example, the output beam 125 may have a fast axis and a slow axis, where the fast-axis divergence is greater than the slow-axis divergence. As another example, the output beam 125 may be an astigmatic beam with a fast-axis divergence of 2 mrad and a slow-axis divergence of 0.5 mrad.

The output beam of light 125 emitted by light source 110 may be unpolarized or randomly polarized, may have no specific or fixed polarization (e.g., the polarization may vary with time), or may have a particular polarization (e.g., the output beam 125 may be linearly polarized, elliptically polarized, or circularly polarized). As an example, the light source 110 may produce linearly polarized light, and the lidar system 100 may include a quarter-wave plate that converts this linearly polarized light into circularly polarized light. The lidar system 100 may transmit the circularly polarized light as the output beam 125, and receive the input beam 135, which may be substantially or at least partially circularly polarized in the same manner as the output beam 125 (e.g., if the output beam 125 is right-hand circularly polarized, then the input beam 135 may also be right-hand circularly polarized). The input beam 135 may pass through the same quarter-wave plate (or a different quarter-wave plate), resulting in the input beam 135 being converted to linearly polarized light which is orthogonally polarized (e.g., polarized at a right angle) with respect to the linearly polarized light produced by light source 110. As another example, the lidar system 100 may employ polarization-diversity detection where two polarization components are detected separately. The output beam 125 may be linearly polarized, and the lidar system 100 may split the input beam 135 into two polarization components (e.g., s-polarization and p-polarization) which are detected separately by two photodiodes (e.g., a balanced photoreceiver that includes two photodiodes).

With continued reference to FIG. 1, the output beam 125 and input beam 135 may be substantially coaxial. In other words, the output beam 125 and input beam 135 may at least partially overlap or share a common propagation axis, so that the input beam 135 and the output beam 125 travel along substantially the same optical path (albeit in opposite directions). As the lidar system 100 scans the output beam 125 across a field of regard, the input beam 135 may follow along with the output beam 125, so that the coaxial relationship between the two beams is maintained.

The lidar system 100 also may include one or more optical components configured to condition, shape, filter, modify, steer, or direct the output beam 125 and/or the input beam 135. For example, lidar system 100 may include one or more lenses, mirrors, filters (e.g., bandpass or interference filters), beam splitters, polarizers, polarizing beam splitters, wave plates (e.g., half-wave or quarter-wave plates), diffractive elements, or holographic elements. In some implementations, lidar system 100 includes a telescope, one or more lenses, or one or more mirrors to expand, focus, or collimate the output beam 125 to a desired beam diameter or divergence. As an example, the lidar system 100 may include one or more lenses to focus the input beam 135 onto an active region of the receiver 140. As another example, the lidar system 100 may include one or more flat mirrors or curved mirrors (e.g., concave, convex, or parabolic mirrors) to steer or focus the output beam 125 or the input beam 135. For example, the lidar system 100 may include an off-axis parabolic mirror to focus the input beam 135 onto an active region of receiver 140. As illustrated in FIG. 1, the lidar system 100 may include the mirror 115, which may be a metallic or dielectric mirror. The mirror 115 may be configured so that the light beam 125 passes through the mirror 115. As an example, mirror 115 may include a hole, slot, or aperture through which the output light beam 125 passes. As another example, the mirror 115 may be configured so that at least 80% of the output beam 125 passes through the mirror 115 and at least 80% of the input beam 135 is reflected by the mirror 115. In some implementations, the mirror 115 may provide for the output beam 125 and the input beam 135 to be substantially coaxial, so that the beams 125 and 135 travel along substantially the same optical path, in opposite directions.

Generally speaking, the scanner 120 steers the output beam 125 in one or more directions downrange. The scanner 120 may include one or more scanning mirrors and one or more actuators driving the mirrors to rotate, tilt, pivot, or move the mirrors in an angular manner about one or more axes, for example. For example, the first mirror of the scanner may scan the output beam 125 along a first direction, and the second mirror may scan the output beam 125 along a second direction that is substantially orthogonal to the first direction. Example implementations of the scanner 120 are discussed in more detail below with reference to FIG. 2.

The scanner 120 may be configured to scan the output beam 125 over a 5-degree angular range, 20-degree angular range, 30-degree angular range, 60-degree angular range, or any other suitable angular range. For example, a scanning mirror may be configured to periodically rotate over a 15-degree range, which results in the output beam 125 scanning across a 30-degree range (e.g., a 0-degree rotation by a scanning mirror results in a 20-degree angular scan of the output beam 125). A field of regard (FOR) of the lidar system 100 may refer to an area, region, or angular range over which the lidar system 100 may be configured to scan or capture distance information. When the lidar system 100 scans the output beam 125 within a 30-degree scanning range, the lidar system 100 may be referred to as having a 30-degree angular field of regard. As another example, a lidar system 100 with a scanning mirror that rotates over a 30-degree range may produce the output beam 125 that scans across a 60-degree range (e.g., a 60-degree FOR). In various implementations, the lidar system 100 may have a FOR of approximately 10°, 20°, 40°, 60°, 120°, or any other suitable FOR. The FOR also may be referred to as a scan region.

The scanner 120 may be configured to scan the output beam 125 horizontally and vertically, and the lidar system 100 may have a particular FOR along the horizontal direction and another particular FOR along the vertical direction. For example, the lidar system 100 may have a horizontal FOR of 10° to 120° and a vertical FOR of 2° to 45°.

The one or more scanning mirrors of the scanner 120 may be communicatively coupled to the controller 150 which may control the scanning mirror(s) so as to guide the output beam 125 in a desired direction downrange or along a desired scan pattern. In general, a scan pattern may refer to a pattern or path along which the output beam 125 is directed, and also may be referred to as an optical scan pattern, optical scan path, or scan path. As an example, the scanner 120 may include two scanning mirrors configured to scan the output beam 125 across a 60° horizontal FOR and a 20° vertical FOR. The two scanner mirrors may be controlled to follow a scan path that substantially covers the 60°×20° FOR. The lidar system 100 can use the scan path to generate a point cloud with pixels that substantially cover the 60°×20° FOR. The pixels may be approximately evenly distributed across the 60°×20° FOR. Alternately, the pixels may have a particular non-uniform distribution (e.g., the pixels may be distributed across all or a portion of the 60°×20° FOR, and the pixels may have a higher density in one or more particular regions of the 60°×20° FOR).

In operation, the light source 110 may emit pulses of light which the scanner 120 scans across a FOR of lidar system 100. The target 130 may scatter one or more of the emitted pulses, and the receiver 140 may detect at least a portion of the pulses of light scattered by the target 130.

The receiver 140 may be referred to as (or may include) a photoreceiver, optical receiver, optical sensor, detector, photodetector, or optical detector. The receiver 140 in some implementations receives or detects at least a portion of the input beam 135 and produces an electrical signal that corresponds to the input beam 135. For example, if the input beam 135 includes an optical pulse, then the receiver 140 may produce an electrical current or voltage pulse that corresponds to the optical pulse detected by the receiver 140. In an example implementation, the receiver 140 includes one or more avalanche photodiodes (APDs) or one or more single-photon avalanche diodes (SPADs). In another implementation, the receiver 140 includes one or more PN photodiodes (e.g., a photodiode structure formed by a p-type semiconductor and a n-type semiconductor) or one or more PIN photodiodes (e.g., a photodiode structure formed by an undoped intrinsic semiconductor region located between p-type and n-type regions).

The receiver 140 may have an active region or an avalanche-multiplication region that includes silicon, germanium, or InGaAs. The active region of receiver 140 may have any suitable size, such as for example, a diameter or width of approximately 50-500 μm. The receiver 140 may include circuitry that performs signal amplification, sampling, filtering, signal conditioning, analog-to-digital conversion, time-to-digital conversion, pulse detection, threshold detection, rising-edge detection, or falling-edge detection. For example, the receiver 140 may include a transimpedance amplifier that converts a received photocurrent (e.g., a current produced by an APD in response to a received optical signal) into a voltage signal. The receiver 140 may direct the voltage signal to pulse-detection circuitry that produces an analog or digital output signal 145 that corresponds to one or more characteristics (e.g., rising edge, falling edge, amplitude, or duration) of a received optical pulse. For example, the pulse-detection circuitry may perform a time-to-digital conversion to produce a digital output signal 145. The receiver 140 may send the electrical output signal 145 to the controller 150 for processing or analysis, e.g., to determine a time-of-flight value corresponding to a received optical pulse.

The controller 150 may be electrically coupled or otherwise communicatively coupled to one or more of the light source 110, the scanner 120, and the receiver 140. The controller 150 may receive electrical trigger pulses or edges from the light source 110, where each pulse or edge corresponds to the emission of an optical pulse by the light source 110. The controller 150 may provide instructions, a control signal, or a trigger signal to the light source 110 indicating when the light source 110 should produce optical pulses. For example, the controller 150 may send an electrical trigger signal that includes electrical pulses, where the light source 110 emits an optical pulse in response to each electrical pulse. Further, the controller 150 may cause the light source 110 to adjust one or more of the frequency, period, duration, pulse energy, peak power, average power, or wavelength of the optical pulses produced by light source 110.

The controller 150 may determine a time-of-flight value for an optical pulse based on timing information associated with when the pulse was emitted by light source 110 and when a portion of the pulse (e.g., the input beam 135) was detected or received by the receiver 140. The controller 150 may include circuitry that performs signal amplification, sampling, filtering, signal conditioning, analog-to-digital conversion, time-to-digital conversion, pulse detection, threshold detection, rising-edge detection, or falling-edge detection.

As indicated above, the lidar system 100 may be used to determine the distance to one or more downrange targets 130. By scanning the lidar system 100 across a field of regard, the system can be used to map the distance to a number of points within the field of regard. Each of these depth-mapped points may be referred to as a pixel or a voxel. A collection of pixels captured in succession (which may be referred to as a depth map, a point cloud, or a frame) may be rendered as an image or may be analyzed to identify or detect objects or to determine a shape or distance of objects within the FOR. For example, a depth map may cover a field of regard that extends 60° horizontally and 15° vertically, and the depth map may include a frame of 100-2000 pixels in the horizontal direction by 4-400 pixels in the vertical direction.

The lidar system 100 may be configured to repeatedly capture or generate point clouds of a field of regard at any suitable frame rate between approximately 0.1 frames per second (FPS) and approximately 1,000 FPS. For example, the lidar system 100 may generate point clouds at a frame rate of approximately 0.1 FPS, 0.5 FPS, 1 FPS, 2 FPS, 5 FPS, 10 FPS, 20 FPS, 100 FPS, 500 FPS, or 1,000 FPS. In an example implementation, the lidar system 100 is configured to produce optical pulses at a rate of 5×105 pulses/second (e.g., the system may determine 500,000 pixel distances per second) and scan a frame of 1000×50 pixels (e.g., 50,000 pixels/frame), which corresponds to a point-cloud frame rate of 10 frames per second (e.g., 10 point clouds per second). The point-cloud frame rate may be substantially fixed or dynamically adjustable, depending on the implementation. For example, the lidar system 100 may capture one or more point clouds at a particular frame rate (e.g., 1 Hz) and then switch to capture one or more point clouds at a different frame rate (e.g., 10 Hz). In general, the lidar system can use a slower frame rate (e.g., 1 Hz) to capture one or more high-resolution point clouds, and use a faster frame rate (e.g., 10 Hz) to rapidly capture multiple lower-resolution point clouds.

The field of regard of the lidar system 100 can overlap, encompass, or enclose at least a portion of the target 130, which may include all or part of an object that is moving or stationary relative to lidar system 100. For example, the target 130 may include all or a portion of a person, vehicle, motorcycle, truck, train, bicycle, wheelchair, pedestrian, animal, road sign, traffic light, lane marking, road-surface marking, parking space, pylon, guard rail, traffic barrier, pothole, railroad crossing, obstacle in or near a road, curb, stopped vehicle on or beside a road, utility pole, house, building, trash can, mailbox, tree, any other suitable object, or any suitable combination of all or part of two or more objects.

Now referring to FIG. 2, a scanner 162 and a receiver 164 can operate in the lidar system of FIG. 1 as the scanner 120 and the receiver 140, respectively. More generally, the scanner 162 and the receiver 164 can operate in any suitable lidar system.

The scanner 162 may include any suitable number of mirrors driven by any suitable number of mechanical actuators. For example, the scanner 162 may include a galvanometer scanner, a resonant scanner, a piezoelectric actuator, a polygonal scanner, a rotating-prism scanner, a voice coil motor, a DC motor, a brushless DC motor, a stepper motor, or a microelectromechanical systems (MEMS) device, or any other suitable actuator or mechanism.

A galvanometer scanner (which also may be referred to as a galvanometer actuator) may include a galvanometer-based scanning motor with a magnet and coil. When an electrical current is supplied to the coil, a rotational force is applied to the magnet, which causes a mirror attached to the galvanometer scanner to rotate. The electrical current supplied to the coil may be controlled to dynamically change the position of the galvanometer mirror. A resonant scanner (which may be referred to as a resonant actuator) may include a spring-like mechanism driven by an actuator to produce a periodic oscillation at a substantially fixed frequency (e.g., 1 kHz). A MEMS-based scanning device may include a mirror with a diameter between approximately 1 and 10 mm, where the mirror is rotated using electromagnetic or electrostatic actuation. A voice coil motor (which may be referred to as a voice coil actuator) may include a magnet and coil. When an electrical current is supplied to the coil, a translational force is applied to the magnet, which causes a mirror attached to the magnet to move or rotate.

In an example implementation, the scanner 162 includes a single mirror configured to scan an output beam 170 along a single direction (e.g., the scanner 162 may be a one-dimensional scanner that scans along a horizontal or vertical direction). The mirror may be a flat scanning mirror attached to a scanner actuator or mechanism which scans the mirror over a particular angular range. The mirror may be driven by one actuator (e.g., a galvanometer) or two actuators configured to drive the mirror in a push-pull configuration. When two actuators drive the mirror in one direction in a push-pull configuration, the actuators may be located at opposite ends or sides of the mirror. The actuators may operate in a cooperative manner so that when one actuator pushes on the mirror, the other actuator pulls on the mirror, and vice versa. In another example implementation, two voice coil actuators arranged in a push-pull configuration drive a mirror along a horizontal or vertical direction.

In some implementations, the scanner 162 may include one mirror configured to be scanned along two axes, where two actuators arranged in a push-pull configuration provide motion along each axis. For example, two resonant actuators arranged in a horizontal push-pull configuration may drive the mirror along a horizontal direction, and another pair of resonant actuators arranged in a vertical push-pull configuration may drive mirror along a vertical direction. In another example implementation, two actuators scan the output beam 170 along two directions (e.g., horizontal and vertical), where each actuator provides rotational motion along a particular direction or about a particular axis.

The scanner 162 also may include one mirror driven by two actuators configured to scan the mirror along two substantially orthogonal directions. For example, a resonant actuator or a galvanometer actuator may drive one mirror along a substantially horizontal direction, and a galvanometer actuator may drive the mirror along a substantially vertical direction. As another example, two resonant actuators may drive a mirror along two substantially orthogonal directions.

In some implementations, the scanner 162 includes two mirrors, where one mirror scans the output beam 170 along a substantially horizontal direction and the other mirror scans the output beam 170 along a substantially vertical direction. In the example of FIG. 2, the scanner 162 includes two mirrors, a mirror 180-1 and a mirror 180-2. The mirror 180-1 may scan the output beam 170 along a substantially horizontal direction, and the mirror 180-2 may scan the output beam 170 along a substantially vertical direction (or vice versa). Mirror 180-1 or mirror 180-2 may be a flat mirror, a curved mirror, or a polygon mirror with two or more reflective surfaces.

The scanner 162 in other implementations includes two galvanometer scanners driving respective mirrors. For example, the scanner 162 may include a galvanometer actuator that scans the mirror 180-1 along a first direction (e.g., vertical), and the scanner 162 may include another galvanometer actuator that scans the mirror 180-2 along a second direction (e.g., horizontal). In yet another implementation, the scanner 162 includes two mirrors, where a galvanometer actuator drives one mirror, and a resonant actuator drives the other mirror. For example, a galvanometer actuator may scan the mirror 180-1 along a first direction, and a resonant actuator may scan the mirror 180-2 along a second direction. The first and second scanning directions may be substantially orthogonal to one another, e.g., the first direction may be substantially vertical, and the second direction may be substantially horizontal. In yet another implementation, the scanner 162 includes two mirrors, where one mirror is a polygon mirror that is rotated in one direction (e.g., clockwise or counter-clockwise) by an electric motor (e.g., a brushless DC motor). For example, mirror 180-1 may be a polygon mirror that scans the output beam 170 along a substantially horizontal direction, and mirror 180-2 may scan the output beam 170 along a substantially vertical direction. A polygon mirror may have two or more reflective surfaces, and the polygon mirror may be continuously rotated in one direction so that the output beam 170 is reflected sequentially from each of the reflective surfaces. A polygon mirror may have a cross-sectional shape that corresponds to a polygon, where each side of the polygon has a reflective surface. For example, a polygon mirror with a square cross-sectional shape may have four reflective surfaces, and a polygon mirror with a pentagonal cross-sectional shape may have five reflective surfaces.

To direct the output beam 170 along a particular scan pattern, the scanner 162 may include two or more actuators driving a single mirror synchronously. For example, the two or more actuators can drive the mirror synchronously along two substantially orthogonal directions to make the output beam 170 follow a scan pattern with substantially straight lines. In some implementations, the scanner 162 may include two mirrors and actuators driving the two mirrors synchronously to generate a scan pattern that includes substantially straight lines. For example, a galvanometer actuator may drive the mirror 180-2 with a substantially linear back-and-forth motion (e.g., the galvanometer may be driven with a substantially sinusoidal or triangle-shaped waveform) that causes the output beam 170 to trace a substantially horizontal back-and-forth pattern, and another galvanometer actuator may scan the mirror 180-1 along a substantially vertical direction. The two galvanometers may be synchronized so that for every 64 horizontal traces, the output beam 170 makes a single trace along a vertical direction. Whether one or two mirrors are used, the substantially straight lines can be directed substantially horizontally, vertically, or along any other suitable direction.

The scanner 162 also may apply a dynamically adjusted deflection along a vertical direction (e.g., with a galvanometer actuator) as the output beam 170 is scanned along a substantially horizontal direction (e.g., with a galvanometer or resonant actuator) to achieve the straight lines. If a vertical deflection is not applied, the output beam 170 may trace out a curved path as it scans from side to side. In some implementations, the scanner 162 uses a vertical actuator to apply a dynamically adjusted vertical deflection as the output beam 170 is scanned horizontally as well as a discrete vertical offset between each horizontal scan (e.g., to step the output beam 170 to a subsequent row of a scan pattern).

With continued reference to FIG. 2, an overlap mirror 190 in this example implementation is configured to overlap the input beam 172 and output beam 170, so that the beams 170 and 172 are substantially coaxial. In FIG. 2, the overlap mirror 190 includes a hole, slot, or aperture 192 through which the output beam 170 passes, and a reflecting surface 194 that reflects at least a portion of the input beam 172 toward the receiver 164. The overlap mirror 190 may be oriented so that input beam 172 and output beam 170 are at least partially overlapped.

In some implementations, the overlap mirror 190 may not include a hole 192. For example, the output beam 170 may be directed to pass by a side of mirror 190 rather than passing through an aperture 192. The output beam 170 may pass alongside mirror 190 and may be oriented at a slight angle with respect to the orientation of the input beam 172. As another example, the overlap mirror 190 may include a small reflective section configured to reflect the output beam 170, and the rest of the overlap mirror 190 may have an AR coating configured to transmit the input beam 172.

The input beam 172 may pass through a lens 196 which focuses the beam onto an active region 166 of the receiver 164. The active region 166 may refer to an area over which receiver 164 may receive or detect input light. The active region may have any suitable size or diameter d, such as for example, a diameter of approximately 25 μm, 50 μm, 80 μm, 100 μm, 200 μm, 500 μm, 1 mm, 2 mm, or 5 mm. The overlap mirror 190 may have a reflecting surface 194 that is substantially flat or the reflecting surface 194 may be curved (e.g., the mirror 190 may be an off-axis parabolic mirror configured to focus the input beam 172 onto an active region of the receiver 140).

The aperture 192 may have any suitable size or diameter Φ1, and the input beam 172 may have any suitable size or diameter Φ2, where Φ2 is greater than Φ1. For example, the aperture 192 may have a diameter Φ1 of approximately 0.2 mm, 0.5 mm, 1 mm, 2 mm, 3 mm, 5 mm, or 10 mm, and the input beam 172 may have a diameter Φ2 of approximately 2 mm, 5 mm, 10 mm, 15 mm, 20 mm, 30 mm, 40 mm, or 50 mm. In some implementations, the reflective surface 194 of the overlap mirror 190 may reflect 70% or more of input beam 172 toward the receiver 164. For example, if the reflective surface 194 has a reflectivity R at an operating wavelength of the light source 160, then the fraction of input beam 172 directed toward the receiver 164 may be expressed as R×[1−(Φ12)2]. As a more specific example, if R is 95%, Φ1 is 2 mm, and Φ2 is 10 mm, then approximately 91% of the input beam 172 may be directed toward the receiver 164 by the reflective surface 194.

FIG. 3 illustrates an example configuration in which several components of the lidar system 100 may operate to scan a 360-degree view of regard. Generally speaking, the field of view of a light source in this configuration follows a circular trajectory and accordingly defines a circular scan pattern on a two-dimensional plane. All points on the trajectory remain at the same elevation relative to the ground level, according to one implementation. In this case, separate beams may follow the circular trajectory with certain vertical offsets relative to each other. In another implementation, the points of the trajectory may define a spiral scan pattern in three-dimensional space. A single beam can be sufficient to trace out the spiral scan pattern but, if desired, multiple beams can be used.

In the example of FIG. 3, a rotating scan module 200 revolves around a central axis in one or both directions as indicated. An electric motor may drive the rotating scan module 200 around the central axis at a constant speed, for example. The rotating scan module 200 includes a scanner, a receiver, an overlap mirror, etc. The components of the rotating module 200 may be similar to the scanner 120, the receiver 140, and the overlap mirror 115. In some implementations, the subsystem 200 also includes a light source and a controller. In other implementations, the light source and/or the controller are disposed apart from the rotating scan module 200 and/or exchange optical and electrical signals with the components of the rotating scan module 200 via corresponding links.

The rotating scan module 200 may include a housing 210 with a window 212. Similar to the window 157 of FIG. 1, the window 212 may be made of glass, plastic, or any other suitable material. The window 212 allows outbound beams as well as return signals to pass through the housing 210. The arc length defined by the window 212 can correspond to any suitable percentage of the circumference of the housing 210. For example, the arc length can correspond to 5%, 20%, 30%, 60%, or possibly even 100% of the circumference.

Now referring to FIG. 4, a rotating scan module 220 is generally similar to the rotating scan module 200. In this implementation, however, the components of the rotating scan module 220 are disposed on a platform 222 which rotates inside a stationary circular housing 230. In this implementation, the circular housing 230 is substantially transparent to light at the lidar-system operating wavelength to pass inbound and outbound light signals. The circular housing 230 in a sense defines a circular window similar to the window 212, and may be made of similar material.

Generating Pixels within a Field of Regard

FIG. 5 illustrates an example scan pattern 240 which the lidar system 100 of FIG. 1 can produce. The lidar system 100 may be configured to scan output optical beam 125 along one or more scan patterns 240. In some implementations, the scan pattern 240 corresponds to a scan across any suitable field of regard (FOR) having any suitable horizontal FOR (FORH) and any suitable vertical FOR (FORV). For example, a certain scan pattern may have a field of regard represented by angular dimensions (e.g., FORH×FORV) 40°×30°, 90°×40°, or 60°×15°. As another example, a certain scan pattern may have a FORH greater than or equal to 10°, 25°, 30°, 40°, 60°, 90°, or 120°. As yet another example, a certain scan pattern may have a FORV greater than or equal to 2°, 5°, 10°, 15°, 20°, 30°, or 45°. In the example of FIG. 5, reference line 246 represents a center of the field of regard of scan pattern 240. The reference line 246 may have any suitable orientation, such as, a horizontal angle of 0° (e.g., reference line 246 may be oriented straight ahead) and a vertical angle of 0° (e.g., reference line 246 may have an inclination of 0°), or the reference line 246 may have a nonzero horizontal angle or a nonzero inclination (e.g., a vertical angle of +10° or −10°) In FIG. 5, if the scan pattern 240 has a 60°×15° field of regard, then the scan pattern 240 covers a ±30° horizontal range with respect to reference line 246 and a ±7.5° vertical range with respect to reference line 246. Additionally, the optical beam 125 in FIG. 5 has an orientation of approximately −15° horizontal and +3° vertical with respect to reference line 246. The beam 125 may be referred to as having an azimuth of −15° and an altitude of +3° relative to the reference line 246. An azimuth (which may be referred to as an azimuth angle) may represent a horizontal angle with respect to the reference line 246, and an altitude (which may be referred to as an altitude angle, elevation, or elevation angle) may represent a vertical angle with respect to the reference line 246.

The scan pattern 240 may include multiple pixels 242, and each pixel 242 may be associated with one or more laser pulses and one or more corresponding distance measurements. A cycle of scan pattern 240 may include a total of Px×Py pixels 242 (e.g., a two-dimensional distribution of Px by Py pixels). For example, the scan pattern 240 may include a distribution with dimensions of approximately 100-2,000 pixels 242 along a horizontal direction and approximately 4-400 pixels 242 along a vertical direction. As another example, the scan pattern 240 may include a distribution of 1,000 pixels 242 along the horizontal direction by 64 pixels 242 along the vertical direction (e.g., the frame size is 1000×64 pixels) for a total of 64,000 pixels per cycle of scan pattern 240. The number of pixels 242 along a horizontal direction may be referred to as a horizontal resolution of the scan pattern 240, and the number of pixels 242 along a vertical direction may be referred to as a vertical resolution of the scan pattern 240. As an example, the scan pattern 240 may have a horizontal resolution of greater than or equal to 100 pixels 242 and a vertical resolution of greater than or equal to 4 pixels 242. As another example, the scan pattern 240 may have a horizontal resolution of 100-2,000 pixels 242 and a vertical resolution of 4-400 pixels 242.

Each pixel 242 may be associated with a distance (e.g., a distance to a portion of a target 130 from which the corresponding laser pulse was scattered) or one or more angular values. As an example, the pixel 242 may be associated with a distance value and two angular values (e.g., an azimuth and altitude) that represent the angular location of the pixel 242 with respect to the lidar system 100. A distance to a portion of the target 130 may be determined based at least in part on a time-of-flight measurement for a corresponding pulse. An angular value (e.g., an azimuth or altitude) may correspond to an angle (e.g., relative to reference line 246) of the output beam 125 (e.g., when a corresponding pulse is emitted from lidar system 100) or an angle of the input beam 135 (e.g., when an input signal is received by lidar system 100). In some implementations, the lidar system 100 determines an angular value based at least in part on a position of a component of the scanner 120. For example, an azimuth or altitude value associated with the pixel 242 may be determined from an angular position of one or more corresponding scanning mirrors of the scanner 120.

In some implementations, the lidar system 100 concurrently directs multiple beams across the field of regard. In the example implementation of FIG. 6, the lidar system generates output beams 250A, 250B, 250C, . . . 250N etc., each of which follows a linear scan pattern 254A, 254B, 254C, . . . 254N. The number of parallel lines can be 2, 4, 12, 20, or any other suitable number. The lidar system 100 may angularly separate the beams 250A, 250B, 250C, . . . 250N, so that, for example, the separation between beams 250A and 250B at a certain distance may be 30 cm, and the separation between the same beams 250A and 250B at a longer distance may be 50 cm.

Similar to the scan pattern 240, each of the linear scan patterns 254A-N includes pixels associated with one or more laser pulses and distance measurements. FIG. 6 illustrates example pixels 252A, 252B and 252C along the scan patterns 254A, 254B and 254C, respectively. The lidar system 100 in this example may generate the values for the pixels 252A-252N at the same time, thus increasing the rate at which values for pixels are determined.

Depending on the implementation, the lidar system 100 may output the beams 250A-N at the same wavelength or different wavelengths. The beam 250A for example may have the wavelength of 1540 nm, the beam 250B may have the wavelength of 1550 nm, the beam 250C may have the wavelength of 1560 nm, etc. The number of different wavelengths the lidar system 100 uses need not match the number of beams. Thus, the lidar system 100 in the example implementation of FIG. 6 may use M wavelengths with N beams, where 1≤M≤N.

Next, FIG. 7 illustrates an example light-source field of view (FOVL) and receiver field of view (FOVR) for the lidar system 100. The light source 110 may emit pulses of light as the FOVL and FOVR are scanned by the scanner 120 across a field of regard (FOR). The light-source field of view may refer to an angular cone illuminated by the light source 110 at a particular instant of time. Similarly, a receiver field of view may refer to an angular cone over which the receiver 140 may receive or detect light at a particular instant of time, and any light outside the receiver field of view may not be received or detected. For example, as the scanner 120 scans the light-source field of view across a field of regard, the lidar system 100 may send the pulse of light in the direction the FOVL is pointing at the time the light source 110 emits the pulse. The pulse of light may scatter off the target 130, and the receiver 140 may receive and detect a portion of the scattered light that is directed along or contained within the FOVR.

In some implementations, the scanner 120 is configured to scan both a light-source field of view and a receiver field of view across a field of regard of the lidar system 100. The lidar system 100 may emit and detect multiple pulses of light as the scanner 120 scans the FOVL and FOVR across the field of regard while tracing out the scan pattern 240. The scanner 120 in some implementations scans the light-source field of view and the receiver field of view synchronously with respect to one another. In this case, as the scanner 120 scans FOVL across a scan pattern 240, the FOVR follows substantially the same path at the same scanning speed. Additionally, the FOVL and FOVR may maintain the same relative position to one another as the scanner 120 scans FOVL and FOVR across the field of regard. For example, the FOVL may be substantially overlapped with or centered inside the FOVR (as illustrated in FIG. 7), and the scanner 120 may maintain this relative positioning between FOVL and FOVR throughout a scan. As another example, the FOVR may lag behind the FOVL by a particular, fixed amount throughout a scan (e.g., the FOVR may be offset from the FOVL in a direction opposite the scan direction).

The FOVL may have an angular size or extent ΘL that is substantially the same as or that corresponds to the divergence of the output beam 125, and the FOVR may have an angular size or extent OR that corresponds to an angle over which the receiver 140 may receive and detect light. The receiver field of view may be any suitable size relative to the light-source field of view. For example, the receiver field of view may be smaller than, substantially the same size as, or larger than the angular extent of the light-source field of view. In some implementations, the light-source field of view has an angular extent of less than or equal to 50 milliradians, and the receiver field of view has an angular extent of less than or equal to 50 milliradians. The FOVL may have any suitable angular extent ΘL, such as for example, approximately 0.1 mrad, 0.2 mrad, 0.5 mrad, 1 mrad, 1.5 mrad, 2 mrad, 3 mrad, 5 mrad, 10 mrad, 20 mrad, 40 mrad, or 50 mrad. Similarly, the FOVR may have any suitable angular extent ΘR, such as for example, approximately 0.1 mrad, 0.2 mrad, 0.5 mrad, 1 mrad, 1.5 mrad, 2 mrad, 3 mrad, 5 mrad, 10 mrad, 20 mrad, 40 mrad, or 50 mrad. The light-source field of view and the receiver field of view may have approximately equal angular extents. As an example, ΘL and ΘR may both be approximately equal to 1 mrad, 2 mrad, or 3 mrad. In some implementations, the receiver field of view is larger than the light-source field of view, or the light-source field of view is larger than the receiver field of view. For example, ΘL may be approximately equal to 1.5 mrad, and ΘR may be approximately equal to 3 mrad.

A pixel 242 may represent or correspond to a light-source field of view. As the output beam 125 propagates from the light source 110, the diameter of the output beam 125 (as well as the size of the corresponding pixel 242) may increase according to the beam divergence ΘL. As an example, if the output beam 125 has a ΘL of 2 mrad, then at a distance of 100 m from the lidar system 100, the output beam 125 may have a size or diameter of approximately 20 cm, and a corresponding pixel 242 may also have a corresponding size or diameter of approximately 20 cm. At a distance of 200 m from the lidar system 100, the output beam 125 and the corresponding pixel 242 may each have a diameter of approximately 40 cm.

A Lidar System Operating in a Vehicle

As indicated above, one or more lidar systems 100 may be integrated into a vehicle. In one example implementation, multiple lidar systems 100 may be integrated into a car to provide a complete 360-degree horizontal FOR around the car. As another example, 4-10 lidar systems 100, each system having a 45-degree to 90-degree horizontal FOR, may be combined together to form a sensing system that provides a point cloud covering a 360-degree horizontal FOR. The lidar systems 100 may be oriented so that adjacent FORs have an amount of spatial or angular overlap to allow data from the multiple lidar systems 100 to be combined or stitched together to form a single or continuous 360-degree point cloud. As an example, the FOR of each lidar system 100 may have approximately 1-15 degrees of overlap with an adjacent FOR. In particular embodiments, a vehicle may refer to a mobile machine configured to transport people or cargo. For example, a vehicle may include, may take the form of, or may be referred to as a car, automobile, motor vehicle, truck, bus, van, trailer, off-road vehicle, farm vehicle, lawn mower, construction equipment, forklift, robot, golf cart, motorhome, taxi, motorcycle, scooter, bicycle, skateboard, train, snowmobile, watercraft (e.g., a ship or boat), aircraft (e.g., a fixed-wing aircraft, helicopter, or dirigible), or spacecraft. In particular embodiments, a vehicle may include an internal combustion engine or an electric motor that provides propulsion for the vehicle.

In some implementations, one or more lidar systems 100 are included in a vehicle as part of an advanced driver assistance system (ADAS) to assist a driver of the vehicle in the driving process. For example, a lidar system 100 may be part of an ADAS that provides information or feedback to a driver (e.g., to alert the driver to potential problems or hazards) or that automatically takes control of part of a vehicle (e.g., a braking system or a steering system) to avoid collisions or accidents. The lidar system 100 may be part of a vehicle ADAS that provides adaptive cruise control, automated braking, automated parking, collision avoidance, alerts the driver to hazards or other vehicles, maintains the vehicle in the correct lane, or provides a warning if an object or another vehicle is in a blind spot.

In some cases, one or more lidar systems 100 are integrated into a vehicle as part of an autonomous-vehicle driving system. In an example implementation, the lidar system 100 provides information about the surrounding environment to a driving system of an autonomous vehicle. An autonomous-vehicle driving system may include one or more computing systems that receive information from the lidar system 100 about the surrounding environment, analyze the received information, and provide control signals to the vehicle's driving systems (e.g., steering wheel, accelerator, brake, or turn signal). For example, the lidar system 100 integrated into an autonomous vehicle may provide an autonomous-vehicle driving system with a point cloud every 0.1 seconds (e.g., the point cloud has a 10 Hz update rate, representing 10 frames per second). The autonomous-vehicle driving system may analyze the received point clouds to sense or identify targets 130 and their respective locations, distances, or speeds, and the autonomous-vehicle driving system may update control signals based on this information. As an example, if the lidar system 100 detects a vehicle ahead that is slowing down or stopping, the autonomous-vehicle driving system may send instructions to release the accelerator and apply the brakes.

An autonomous vehicle may be referred to as an autonomous car, driverless car, self-driving car, robotic car, or unmanned vehicle. An autonomous vehicle may be a vehicle configured to sense its environment and navigate or drive with little or no human input. For example, an autonomous vehicle may be configured to drive to any suitable location and control or perform all safety-critical functions (e.g., driving, steering, braking, parking) for the entire trip, with the driver not expected to control the vehicle at any time. As another example, an autonomous vehicle may allow a driver to safely turn their attention away from driving tasks in particular environments (e.g., on freeways), or an autonomous vehicle may provide control of a vehicle in all but a few environments, requiring little or no input or attention from the driver.

An autonomous vehicle may be configured to drive with a driver present in the vehicle, or an autonomous vehicle may be configured to operate the vehicle with no driver present. As an example, an autonomous vehicle may include a driver's seat with associated controls (e.g., steering wheel, accelerator pedal, and brake pedal), and the vehicle may be configured to drive with no one seated in the driver's seat or with little or no input from a person seated in the driver's seat. As another example, an autonomous vehicle may not include any driver's seat or associated driver's controls, and the vehicle may perform substantially all driving functions (e.g., driving, steering, braking, parking, and navigating) without human input. As another example, an autonomous vehicle may be configured to operate without a driver (e.g., the vehicle may be configured to transport human passengers or cargo without a driver present in the vehicle). As another example, an autonomous vehicle may be configured to operate without any human passengers (e.g., the vehicle may be configured for transportation of cargo without having any human passengers onboard the vehicle).

In some implementations, a light source of a lidar system is located remotely from some of the other components of the lidar system such as the scanner and the receiver. Moreover, a lidar system implemented in a vehicle may include fewer light sources than scanners and receivers.

FIG. 8 illustrates an example configuration in which a laser-sensor link 320 includes an optical link 330 and an electrical link 350 coupled between a laser 300 and a sensor 310. The laser 300 may be configured to emit pulses of light and may be referred to as a laser system, laser head, or light source. The laser 300 may include, may be part of, may be similar to, or may be substantially the same as the light source 110 illustrated in FIG. 1 and discussed above. Further, the scanner 302, the receiver 304, the controller 306, and the mirror 308 may be similar to the scanner 120, the receiver 140, the controller 150, and the mirror 115 discussed above. In the example of FIG. 8, the laser 300 is coupled to the remotely located sensor 310 by a laser-sensor link 320 (which may be referred to as a link). The sensor 310 may be referred to as a sensor head and may include the mirror 308, the scanner 302, the receiver 304, and the controller 306. In an example implementation, the laser 300 includes a pulsed laser diode (e.g., a pulsed DFB laser) followed by an optical amplifier, and light from the laser 300 is conveyed by an optical fiber of the laser-sensor link 320 of a suitable length to the scanner 120 in a remotely located sensor 310.

The laser-sensor link 320 may include any suitable number of optical links 330 (e.g., 0, 1, 2, 3, 5, or 10) and any suitable number of electrical links 350 (e.g., 0, 1, 2, 3, 5, or 10). In the example configuration depicted in FIG. 8, the laser-sensor link 320 includes one optical link 330 from the laser 300 to an output collimator 340 and one electrical link 350 that connects the laser 300 to the controller 150. The optical link 330 may include optical fiber (which may be referred to as fiber-optic cable or fiber) that conveys, carries, transports, or transmits light between the laser 300 and the sensor 310. The optical fiber may be, for example, single-mode (SM) fiber, multi-mode (MM) fiber, large-mode-area (LMA) fiber, polarization-maintaining (PM) fiber, photonic-crystal or photonic-bandgap fiber, gain fiber (e.g., rare-earth-doped optical fiber for use in an optical amplifier), or any suitable combination thereof. The output collimator 340 receives optical pulses conveyed from the laser 300 by the optical link 330 and produces a free-space optical beam 312 that includes the optical pulses. The output collimator 340 directs the free-space optical beam 312 through the mirror 308 and to the scanner 302.

The electrical link 350 may include electrical wire or cable (e.g., a coaxial cable or twisted-pair cable) that conveys or transmits electrical power and/or one or more electrical signals between the laser 300 and the sensor 310. For example, the laser 300 may include a power supply or a power conditioner that provides electrical power to the laser 300, and additionally, the power supply or power conditioner may provide power to one or more components of the sensor 310 (e.g., the scanner 304, the receiver 304, and/or the controller 306) via the one or more electrical links 350. The electrical link 350 in some implementations may convey electrical signals that include data or information in analog or digital format. Further, the electrical link 350 may provide an interlock signal from the sensor 310 to the laser 300. If the controller 306 detects a fault condition indicating a problem with the sensor 310 or the overall lidar system, the controller 306 may change a voltage on the interlock line (e.g., from 5 V to 0 V) indicating that the laser 300 should shut down, stop emitting light, or reduce the power or energy of emitted light. A fault condition may be triggered by a failure of the scanner 302, a failure of the receiver 304, or by a person or object coming within a threshold distance of the sensor 310 (e.g., within 0.1 m, 0.5 m, 1 m, 5 m, or any other suitable distance).

As discussed above, a lidar system can include one or more processors to determine a distance D to a target. In the implementation illustrated in FIG. 8, the controller 306 may be located in the laser 300 or in the sensor 310, or parts of the controller 150 may be distributed between the laser 300 and the sensor 310. In an example implementation, each sensor head 310 of a lidar system includes electronics (e.g., an electronic filter, transimpedance amplifier, threshold detector, or time-to-digital (TDC) converter) configured to receive or process a signal from the receiver 304 or from an APD or SPAD of the receiver 304. Additionally, the laser 300 may include processing electronics configured to determine a time-of-flight value or a distance to the target based on a signal received from the sensor head 310 via the electrical link 350.

Next, FIG. 9 illustrates an example vehicle 354 with a lidar system 351 that includes a laser 352 with multiple sensor heads 360 coupled to the laser 352 via multiple laser-sensor links 370. The laser 352 and the sensor heads 360 may be similar to the laser 300 and the sensor 310 discussed above, in some implementations. For example, each of the laser-sensor links 370 may include one or more optical links and/or one or more electrical links. The sensor heads 360 in FIG. 9 are positioned or oriented to provide a greater than 30-degree view of an environment around the vehicle. More generally, a lidar system with multiple sensor heads may provide a horizontal field of regard around a vehicle of approximately 30°, 45°, 60°, 90°, 120°, 180°, 270°, or 360°. Each of the sensor heads may be attached to or incorporated into a bumper, fender, grill, side panel, spoiler, roof, headlight assembly, taillight assembly, rear-view mirror assembly, hood, trunk, window, or any other suitable part of the vehicle.

In the example of FIG. 9, four sensor heads 360 are positioned at or near the four corners of the vehicle (e.g., the sensor heads may be incorporated into a light assembly, side panel, bumper, or fender), and the laser 352 may be located within the vehicle (e.g., in or near the trunk). The four sensor heads 360 may each provide a 90° to 120° horizontal field of regard (FOR), and the four sensor heads 360 may be oriented so that together they provide a complete 360-degree view around the vehicle. As another example, the lidar system 351 may include six sensor heads 360 positioned on or around a vehicle, where each of the sensor heads 360 provides a 60° to 90° horizontal FOR. As another example, the lidar system 351 may include eight sensor heads 360, and each of the sensor heads 360 may provide a 45° to 60° horizontal FOR. As yet another example, the lidar system 351 may include six sensor heads 360, where each of the sensor heads 360 provides a 70° horizontal FOR with an overlap between adjacent FORs of approximately 10°. As another example, the lidar system 351 may include two sensor heads 360 which together provide a horizontal FOR of greater than or equal to 30°.

Data from each of the sensor heads 360 may be combined or stitched together to generate a point cloud that covers a greater than or equal to 30-degree horizontal view around a vehicle. For example, the laser 352 may include a controller or processor that receives data from each of the sensor heads 360 (e.g., via a corresponding electrical link 370) and processes the received data to construct a point cloud covering a 360-degree horizontal view around a vehicle or to determine distances to one or more targets. The point cloud or information from the point cloud may be provided to a vehicle controller 372 via a corresponding electrical, optical, or radio link 370. In some implementations, the point cloud is generated by combining data from each of the multiple sensor heads 360 at a controller included within the laser 352 and provided to the vehicle controller 372. In other implementations, each of the sensor heads 360 includes a controller or process that constructs a point cloud for a portion of the 360-degree horizontal view around the vehicle and provides the respective point cloud to the vehicle controller 372. The vehicle controller 372 then combines or stitches together the points clouds from the respective sensor heads 360 to construct a combined point cloud covering a 360-degree horizontal view. Still further, the vehicle controller 372 in some implementations communicates with a remote server to process point cloud data.

In any event, the vehicle 354 may be an autonomous vehicle where the vehicle controller 372 provides control signals to various components 390 within the vehicle 354 to maneuver and otherwise control operation of the vehicle 354. The components 390 are depicted in an expanded view in FIG. 9 for ease of illustration only. The components 390 may include an accelerator 374, brakes 376, a vehicle engine 378, a steering mechanism 380, lights 382 such as brake lights, head lights, reverse lights, emergency lights, etc., a gear selector 384, and/or other suitable components that effectuate and control movement of the vehicle 354. The gear selector 384 may include the park, reverse, neutral, drive gears, etc. Each of the components 390 may include an interface via which the component receives commands from the vehicle controller 372 such as “increase speed,” “decrease speed,” “turn left 5 degrees,” “activate left turn signal,” etc. and, in some cases, provides feedback to the vehicle controller 372.

In some implementations, the vehicle controller 372 receives point cloud data from the laser 352 or sensor heads 360 via the link 370 and analyzes the received point cloud data to sense or identify targets 130 and their respective locations, distances, speeds, shapes, sizes, type of target (e.g., vehicle, human, tree, animal), etc. The vehicle controller 372 then provides control signals via the link 370 to the components 390 to control operation of the vehicle based on the analyzed information. For example, the vehicle controller 372 may identify an intersection based on the point cloud data and determine that the intersection is the appropriate location at which to make a left turn. Accordingly, the vehicle controller 372 may provide control signals to the steering mechanism 380, the accelerator 374, and brakes 376 for making a proper left turn. In another example, the vehicle controller 372 may identify a traffic light based on the point cloud data and determine that the vehicle 354 needs to come to a stop. As a result, the vehicle controller 372 may provide control signals to release the accelerator 374 and apply the brakes 376.

Example Receiver Implementation

FIG. 10 illustrates an example InGaAs avalanche photodiode (APD) 400. Referring back to FIG. 1, the receiver 140 may include one or more APDs 400 configured to receive and detect light from input light such as the beam 135. More generally, the APD 400 can operate in any suitable receiver of input light. The APD 400 may be configured to detect a portion of pulses of light which are scattered by a target located downrange from the lidar system in which the APD 400 operates. For example, the APD 400 may receive a portion of a pulse of light scattered by the target 130 depicted in FIG. 1, and generate an electrical-current signal corresponding to the received pulse of light.

The APD 400 may include doped or undoped layers of any suitable semiconductor material, such as for example, silicon, germanium, InGaAs, InGaAsP, or indium phosphide (InP). Additionally, the APD 400 may include an upper electrode 402 and a lower electrode 406 for coupling the ADP 400 to an electrical circuit. The APD 400 for example may be electrically coupled to a voltage source that supplies a reverse-bias voltage V to the APD 400. Additionally, the APD 400 may be electrically coupled to a transimpedance amplifier which receives electrical current generated by the APD 400 and produces an output voltage signal that corresponds to the received current. The upper electrode 402 or lower electrode 406 may include any suitable electrically conductive material, such as for example a metal (e.g., gold, copper, silver, or aluminum), a transparent conductive oxide (e.g., indium tin oxide), a carbon-nanotube material, or polysilicon. In some implementations, the upper electrode 402 is partially transparent or has an opening to allow input light 410 to pass through to the active region of the APD 400. In FIG. 10, the upper electrode 402 may have a ring shape that at least partially surrounds the active region of the APD 400, where the active region refers to an area over which the APD 400 may receive and detect the input light 410. The active region may have any suitable size or diameter d, such as for example, a diameter of approximately 25 μm, 50 μm, 80 μm, 100 μm, 200 μm, 500 μm, 1 mm, 2 mm, or 5 mm.

The APD 400 may include any suitable combination of any suitable semiconductor layers having any suitable doping (e.g., n-doped, p-doped, or intrinsic undoped material). In the example of FIG. 10, the InGaAs APD 400 includes a p-doped InP layer 420, an InP avalanche layer 422, an absorption layer 424 with n-doped InGaAs or InGaAsP, and an n-doped InP substrate layer 426. Depending on the implementation, the APD 400 may include separate absorption and avalanche layers, or a single layer may act as both an absorption and avalanche region. The APD 400 may operate electrically as a PN diode or a PIN diode, and, during operation, the APD 400 may be reverse-biased with a positive voltage V applied to the lower electrode 406 with respect to the upper electrode 402. The applied reverse-bias voltage V may have any suitable value, such as for example approximately 5 V, 10 V, 20 V, 30 V, 50 V, 75 V, 100 V, or 200 V.

In FIG. 10, photons of the input light 410 may be absorbed primarily in the absorption layer 424, resulting in the generation of electron-hole pairs (which may be referred to as photo-generated carriers). For example, the absorption layer 424 may be configured to absorb photons corresponding to the operating wavelength of the lidar system 100 (e.g., any suitable wavelength between approximately 1400 nm and approximately 1600 nm). In the avalanche layer 422, an avalanche-multiplication process occurs where carriers (e.g., electrons or holes) generated in the absorption layer 424 collide with the semiconductor lattice of the absorption layer 424, and produce additional carriers through impact ionization. This avalanche process can repeat numerous times so that one photo-generated carrier may result in the generation of multiple carriers. As an example, a single photon absorbed in the absorption layer 424 may lead to the generation of approximately 10, 50, 100, 200, 500, 1000, 10,000, or any other suitable number of carriers through an avalanche-multiplication process. The carriers generated in an APD 400 may produce an electrical current that is coupled to an electrical circuit which may perform signal amplification, sampling, filtering, signal conditioning, analog-to-digital conversion, time-to-digital conversion, pulse detection, threshold detection, rising-edge detection, or falling-edge detection.

The number of carriers generated from a single photo-generated carrier may increase as the applied reverse bias V is increased. If the applied reverse bias V is increased above a particular value referred to as the APD breakdown voltage, then a single carrier can trigger a self-sustaining avalanche process (e.g., the output of the APD 400 is saturated regardless of the input light level). The APD 400 that is operated at or above a breakdown voltage may be referred to as a single-photon avalanche diode (SPAD) and may be referred to as operating in a Geiger mode or a photon-counting mode. The APD 400 that is operated below a breakdown voltage may be referred to as a linear APD, and the output current generated by the APD 400 may be sent to an amplifier circuit (e.g., a transimpedance amplifier). The receiver 140 (see FIG. 1) may include an APD configured to operate as a SPAD and a quenching circuit configured to reduce a reverse-bias voltage applied to the SPAD when an avalanche event occurs in the SPAD. The APD 400 configured to operate as a SPAD may be coupled to an electronic quenching circuit that reduces the applied voltage V below the breakdown voltage when an avalanche-detection event occurs. Reducing the applied voltage may halt the avalanche process, and the applied reverse-bias voltage may then be re-set to await a subsequent avalanche event. Additionally, the APD 400 may be coupled to a circuit that generates an electrical output pulse or edge when an avalanche event occurs.

In some implementations, the APD 400 or the APD 400 along with transimpedance amplifier have a noise-equivalent power (NEP) that is less than or equal to 100 photons, 50 photons, 30 photons, 20 photons, or 10 photons. For example, the APD 400 may be operated as a SPAD and may have a NEP of less than or equal to 20 photons. As another example, the APD 400 may be coupled to a transimpedance amplifier that produces an output voltage signal with a NEP of less than or equal to 50 photons. The NEP of the APD 400 is a metric that quantifies the sensitivity of the APD 400 in terms of a minimum signal (or a minimum number of photons) that the APD 400 can detect. The NEP may correspond to an optical power (or to a number of photons) that results in a signal-to-noise ratio of 1, or the NEP may represent a threshold number of photons above which an optical signal may be detected. For example, if the APD 400 has a NEP of 20 photons, then the input beam 410 with 20 photons may be detected with a signal-to-noise ratio of approximately 1 (e.g., the APD 400 may receive 20 photons from the input beam 410 and generate an electrical signal representing the input beam 410 that has a signal-to-noise ratio of approximately 1). Similarly, the input beam 410 with 100 photons may be detected with a signal-to-noise ratio of approximately 5. In some implementations, the lidar system 100 with the APD 400 (or a combination of the APD 400 and transimpedance amplifier) having a NEP of less than or equal to 100 photons, 50 photons, 30 photons, 20 photons, or 10 photons offers improved detection sensitivity with respect to a conventional lidar system that uses a PN or PIN photodiode. For example, an InGaAs PIN photodiode used in a conventional lidar system may have a NEP of approximately 104 to 105 photons, and the noise level in a lidar system with an InGaAs PIN photodiode may be 103 to 104 times greater than the noise level in a lidar system 100 with the InGaAs APD detector 400.

Referring back to FIG. 1, an optical filter may be located in front of the receiver 140 and configured to transmit light at one or more operating wavelengths of the light source 110 and attenuate light at surrounding wavelengths. For example, an optical filter may be a free-space spectral filter located in front of APD 400 of FIG. 10. This spectral filter may transmit light at the operating wavelength of the light source 110 (e.g., between approximately 1530 nm and 1560 nm) and attenuate light outside that wavelength range. As a more specific example, light with wavelengths of approximately 400-1530 nm or 1560-2000 nm may be attenuated by any suitable amount, such as for example, by at least 5 dB, 10 dB, 20 dB, 30 dB, or 40 dB.

Next, FIG. 11 illustrates an APD 502 coupled to an example pulse-detection circuit 504. The APD 502 can be similar to the APD 400 discussed above with reference to FIG. 10, or can be any other suitable detector. The pulse-detection circuit 504 can operate in the lidar system of FIG. 1 as part of the receiver 140. Further, the pulse-detection circuit 504 can operate in the receiver 164 of FIG. 2, the receiver 304 of FIG. 8, or any other suitable receiver. The pulse-detection circuit 504 alternatively can be implemented in the controller 150, the controller 306, or another suitable controller. In some implementations, parts of the pulse-detection circuit 504 can operate in a receiver and other parts of the pulse-detection circuit 504 can operate in a controller. For example, components 510 and 512 may be a part of the receiver 140, and components 514 and 516 may be a part of the controller 150.

The pulse-detection circuit 504 may include circuitry that receives a signal from a detector (e.g., an electrical current from the APD 502) and performs current-to-voltage conversion, signal amplification, sampling, filtering, signal conditioning, analog-to-digital conversion, time-to-digital conversion, pulse detection, threshold detection, rising-edge detection, or falling-edge detection. The pulse-detection circuit 504 may determine whether an optical pulse has been received by the APD 502 or may determine a time associated with receipt of an optical pulse by the APD 502. Additionally, the pulse-detection circuit 504 may determine a duration of a received optical pulse. In an example implementation, the pulse-detection circuit 504 includes a transimpedance amplifier (TIA) 510, a gain circuit 512, a comparator 514, and a time-to-digital converter (TDC) 516.

The TIA 510 may be configured to receive an electrical-current signal from the APD 502 and produce a voltage signal that corresponds to the received electrical-current signal. For example, in response to a received optical pulse, the APD 502 may produce a current pulse corresponding to the optical pulse. The TIA 510 may receive the current pulse from the APD 502 and produce a voltage pulse that corresponds to the received current pulse. The TIA 510 may also act as an electronic filter. For example, the TIA 510 may be configured as a low-pass filter that removes or attenuates high-frequency electrical noise by attenuating signals above a particular frequency (e.g., above 1 MHz, 10 MHz, 20 MHz, 50 MHz, 100 MHz, 200 MHz, or any other suitable frequency).

The gain circuit 512 may be configured to amplify a voltage signal. As an example, the gain circuit 512 may include one or more voltage-amplification stages that amplify a voltage signal received from the TIA 510. For example, the gain circuit 512 may receive a voltage pulse from the TIA 510, and the gain circuit 512 may amplify the voltage pulse by any suitable amount, such as for example, by a gain of approximately 3 dB, 10 dB, 20 dB, 30 dB, 40 dB, or 50 dB. Additionally, the gain circuit 512 may also act as an electronic filter configured to remove or attenuate electrical noise.

The comparator 514 may be configured to receive a voltage signal from the TIA 510 or the gain circuit 512 and produce an electrical-edge signal (e.g., a rising edge or a falling edge) when the received voltage signal rises above or falls below a particular threshold voltage VT. As an example, when a received voltage rises above VT, the comparator 514 may produce a rising-edge digital-voltage signal (e.g., a signal that steps from approximately 0 V to approximately 2.5 V, 3.3 V, 5 V, or any other suitable digital-high level). As another example, when a received voltage falls below VT, the comparator 514 may produce a falling-edge digital-voltage signal (e.g., a signal that steps down from approximately 2.5 V, 3.3 V, 5 V, or any other suitable digital-high level to approximately 0 V). The voltage signal received by the comparator 514 may be received from the TIA 510 or the gain circuit 512 and may correspond to an electrical-current signal generated by the APD 502. For example, the voltage signal received by the comparator 514 may include a voltage pulse that corresponds to an electrical-current pulse produced by the APD 502 in response to receiving an optical pulse. The voltage signal received by the comparator 514 may be an analog signal, and an electrical-edge signal produced by the comparator 514 may be a digital signal.

The time-to-digital converter (TDC) 516 may be configured to receive an electrical-edge signal from the comparator 514 and determine an interval of time between emission of a pulse of light by the light source and receipt of the electrical-edge signal. The output of the TDC 516 may be a numerical value that corresponds to the time interval determined by the TDC 516. In some implementations, the TDC 516 has an internal counter or clock with any suitable period, such as for example, 5 ps, 10 ps, 15 ps, 20 ps, 30 ps, 50 ps, 100 ps, 0.5 ns, 1 ns, 2 ns, 5 ns, or 10 ns. The TDC 516 for example may have an internal counter or clock with a 20 ps period, and the TDC 516 may determine that an interval of time between emission and receipt of a pulse is equal to 25,000 time periods, which corresponds to a time interval of approximately 0.5 microseconds. Referring back to FIG. 1, the TDC 516 may send the numerical value “25000” to a processor or controller 150 of the lidar system 100, which may include a processor configured to determine a distance from the lidar system 100 to the target 130 based at least in part on an interval of time determined by a TDC 516. The processor may receive a numerical value (e.g., “25000”) from the TDC 516 and, based on the received value, the processor may determine the distance from the lidar system 100 to a target 130.

Example Techniques for Varying Pulse Rate

As mentioned above with reference to FIG. 1, the light source 110 may be a pulsed laser that produces pulses at a pulse repetition frequency of approximately 100 kHz to 5 MHz or a pulse period (e.g., a time between consecutive pulses) of approximately 200 ns to 10 μs. The light source 110 may have a variable pulse repetition frequency, depending on the implementation. As an example, the light source 110 may have a pulse repetition frequency that can be varied from approximately 500 kHz to 3 MHz. In some embodiments, the controller 150 may provide instructions, a control signal, or a trigger signal to the light source 110 indicating when the light source 110 should produce optical pulses. For example, the controller 150 may send an electrical trigger signal that includes electrical pulses, where the light source 110 emits an optical pulse in response to each electrical pulse.

In some embodiments, the controller 150 may communicate with the receiver 140 as shown in FIG. 1 that detects a received light signal scattered by a remote target 130. For example, the pulse-detection circuit 504 may detect the received light signal as shown in FIG. 11. The pulse detection circuit 504 may compare a voltage from the received light signal to a voltage threshold VT and, when the voltage exceeds the voltage threshold VT, the pulse detection circuit 504 (and/or another component of the receiver 140) can register detection of a return light pulse. In response to receiving an indication of a return light pulse, the controller 150 may provide a control signal or other trigger signal to the light source 110, indicating that the light source 110 should produce a new light pulse. In response, the light source 110 emits a subsequent light pulse. The lidar system 150 in this manner may increase the effective pulse rate.

When the receiver 140 does not detect a return light pulse within a threshold time period (e.g., 1.33 μs) corresponding to a maximum range (e.g., 200 m) at which a target can be located relative to the lidar system 100, the controller 150 may provide a control signal to the light source 110 to produce a light pulse. To this end, the controller 150 can implement a timer in hardware, firmware, software, or any suitable combination thereof.

In some implementations, in addition to providing an indication of a received light signal to the controller 150 when a voltage from the received light signal exceeds a voltage threshold VT, the receiver 140 provides additional characteristics of the received light signal to the controller 150. The additional characteristics may include indications of the peak power for the received light signal, the average power for the received light signal, the pulse energy of the received light signal, the pulse duration of the received light signal, or any other suitable characteristics of the received light signal. The controller 150 may then analyze these characteristics to determine whether the received light signal scattered from a “hard” target or a “soft” target. A “hard target” may be an object such as a vehicle, building, person, etc. that scatters a large portion of the light pulse. A “soft” target may be fog or rain that scatters a small portion of the light pulse. When the controller 150 determines that the received light signal scattered from a hard target, the controller 150 provides the control signal or other trigger signal to the light source 100 to produce a light pulse. On the other hand, when the controller 150 determines that the received light signal scattered from a soft target, the controller 150 may not provide a control signal or other trigger signal to the light source 100 and may continue to wait until a hard target is detected or the threshold time period (e.g., 1.33 μs) has expired. This process may be repeated before transmitting each light pulse.

To determine whether the received light signal scattered from a hard target or a soft target, the controller 150 may compare the peak power, average power, or pulse energy for the received light signal to a power or energy threshold. In some implementations, the controller may combine two or more of the peak or average power, pulse energy, the distance measurement, and the pulse duration in any suitable manner (e.g., by determining a ratio between the peak power and the pulse duration) and compare the combined metric to a combined threshold.

FIG. 12 illustrates example timing of outbound pulses in the lidar system 100. The pulse timing diagram 600 schematically illustrates when the controller 150 provides signals to the light source 110 to trigger emission of light pulses. As shown in the pulse timing diagram 600, the period between light pulses varies based on when the receiver 140 detects a return pulse corresponding to the previous light pulse.

In the illustrated example, after the lidar system 100 emits pulse N, the receiver 140 detects a return pulse corresponding to pulse N after a time interval T1. The controller 150 generates a signal 610 in response to the determination that the receiver 140 has received pulse N. The signal 610 causes the lidar system 100 to emit pulse N+1. For clarity, FIG. 12 also illustrates a short delay between the time pulse N returns and pulse N+1 leaves the lidar system 100. This delay corresponds to the time it takes the signal 610 to propagate through the lidar system 100.

The lidar system 100 in the scenario of FIG. 12 emits pulse N+1 but does not receive a return pulse corresponding to pulse N+1 in the time T2 it takes a light pulse to travel to a target disposed at the maximum range and return to the lidar system 100. The lidar system 100 in this case generates signal 612 and emits next pulse N+2 upon expiration of a time period of duration T2. As FIG. 12 further illustrates, the receiver 140 receives a return pulse corresponding to the emitted pulse N+2 after a time period T3. Because T1<T2 and T3<T2 in this case, the lidar system achieves a higher pulse rate than a fixed pulse rate in which each pair of adjacent pulses is separated by a time interval of duration T2.

Additionally or alternatively, the lidar system 100 may vary the pulse rate according to the orientation of the light pulses with respect to the direction of the front of the lidar system 100. FIG. 13 illustrates an example vehicle 700, which may be similar to the vehicle 354 of FIG. 9, and in which the lidar system 100 may operate. The scanner 120 directs light pulses transmitted by a light source 110 across a 120° horizontal FOR. For purposes of this illustration, 0° may refer to the horizontal orientation that is directly in front of the lidar system 100 and 35 60° may refer to horizontal orientations at or outside the peripheries of the lidar system 100. In some scenarios, the light source 110 may have a pulse repetition frequency that is slower near the front of the lidar system 100 and faster near the periphery. In this manner, the lidar system can increase the power and range farther directly in front of the lidar system 100 and then decrease the power and corresponding range as the lidar system scans toward the sides. In the example implementation illustrated in FIG. 13, the lidar system 100 is positioned near the front of the vehicle 700 such that the 0° horizontal orientation directly in front of the lidar system 100 is also directly in front of the vehicle 700. In other implementations, one or several lidar systems 100 or sensor heads may be positioned at the sides of the vehicle 700, near the back of the vehicle 700, in the corners of the vehicle 700, or placed in any other suitable manner with respect to the vehicle 700.

FIG. 13 includes a graph 710 to illustrate the relationship between information density and the horizontal orientation of a light pulse, and a graph 720 to illustrate the relationship between the pulse rate and the horizontal orientation of a light pulse. Information density may refer to the number of targets at a particular orientation or portion of the field of regard. For example, targets within a field of regard of the lidar system are more likely to be in front of the lidar system 100 (e.g., when the lidar system is positioned near the front of the vehicle 700) than at the periphery so the information density may be higher near the front of the lidar system 100. In the graphical representation 710, the information density is highest near the front of the lidar system 100 at 0° and trails off near the periphery at 60°. In the graphical representation 720, the pulse rate may be the lowest between 0° and 15° before rapidly increasing and then plateauing around 45°.

In other implementations, the light source operating in the vehicle 700 may have a pulse repetition frequency that is faster near the front of the lidar system 100 and slower near the periphery. FIG. 14 includes a graph 810 that illustrates the relationship between information density and the horizontal orientation of a light pulse, and a graph 820 that illustrates the relationship between the pulse rate and the horizontal orientation of a light pulse. The graph 810 may be similar to the graph 710 discussed above. However, the graph 820 illustrates a generally opposite relationship between the pulse rate and the horizontal orientation of a light pulse as compared to the graph 720 of FIG. 13. The resolution or pixel density is higher for the area in front of the lidar system 100. By increasing the pulse rate near the front of the lidar system 100, the lidar system can collect more data points when information density is higher.

The controller 150 may identify the orientations at which the light pulses are transmitted (e.g., by communicating with the scanner 120). The controller 150 may provide control signals to the light source 110 to increase or decrease the pulse rate as the orientation increases. In other implementations, the controller 150 may compare the orientation to a threshold orientation and may provide a control signal to the light source 110 adjusting the pulse rate when the orientation increases above or decreases below a threshold orientation.

For example, at 0 degrees the pulse rate may be 750 kHz to allow for a 1.33 μs time of flight to reach a target at a maximum range of 200 m. When the orientation exceeds a first threshold angle with respect to the lidar system 100 (e.g., 30 degrees), the pulse rate may increase to a second pulse rate (1.5 MHz). The light source 110 may decrease the power or energy accordingly, as the faster pulse rate may not allow for the light pulses to reach targets at the maximum range. In some implementations, the light source 110 may operate in a constant power mode, where the average power of the emitted output beam 125 remains substantially constant over a period of time. Accordingly, the amount of energy per light pulse may decrease when the pulse rate increases. Additionally, the amount of energy per light pulse may increase when the pulse rate decreases. In other implementations, the light source 110 may operate in a constant energy mode, where the amount of energy per light pulse remains substantially constant over a period of time. Accordingly, the average power of the emitted output beam 125 may increase when the pulse rate increases. Additionally, the average power of the emitted output beam 125 may decrease when the pulse rate decreases. When the orientation exceeds a second threshold angle with respect to the lidar system 100 (e.g., 45 degrees), the pulse rate may increase to a third pulse rate, and so on. In some implementations, the controller 150 determines the threshold orientations. The threshold orientations may be static and predetermined or may be dynamically set by the controller 150. For example, a threshold orientation may be determined based on point cloud data from a previous scan line or scan frame. In another example, the controller 150 may set a threshold orientation according to an upcoming vehicle maneuver such as a lane charge or turn. For example, when the vehicle is about to make a left turn, the controller 150 may set a threshold orientation near the left side of the lidar system 100 (e.g., when the lidar system 100 is positioned in front of the vehicle) to increase the pulse rate near the left side of the vehicle to more clearly identify objects in an area that the vehicle is approaching. Still further, the controller 150 may set the threshold orientation based on road conditions, visibility due to fog, snow, or rain, for example, or based on any other suitable condition to adjust the pulse rate above or below the threshold orientation.

In some implementations, the lidar system 100 may include two or more scanners, each scanning in opposite directions with respect to the front of the lidar system 100 (e.g., from 0 degrees to 60 degrees and from 0 degrees to −60 degrees). In this manner, the horizontal field of regard of the lidar system 100 may double. In other implementations, the two or more scanners scan in the same direction and are offset by a predetermined phase angle (e.g., 60 degrees).

The techniques discussed with reference to FIGS. 13 and 14 can be used with the implementations in which the lidar system 100 scans a FOV with the FORH of less than 360 degrees (e.g., 60 degrees) as well as the implementations in which the lidar system conducts a circular scan (see FIGS. 3 and 4).

In yet other implementations, the lidar system 100 may adjust the pulse rate in accordance with the scan speed of the scanner 120 to compensate for motor dynamics at the scanner 120. As mentioned above, the scanner 120 may scan in the forward-scanning and reverse-scanning directions. The scanner 120 changes the direction of the scan from the forward-scanning direction to the reverse-scanning direction at a first turnaround point, and from the reverse-scanning direction to the forward-scanning direction at a second turnaround point. When the field of regard is centered at a front-facing direction with respect to the lidar system 100, the turnaround points are positioned symmetrically relative to the front-facing direction, and each of the turnaround points is a side-facing turnaround point. As mentioned above, the forward and reverse-scanning directions may be substantially horizontal scanning directions, substantially vertical scanning directions, or scanning directions having any suitable combination of horizontal and vertical components. Accordingly, the turnaround points may be horizontal turnaround points where the scanner 120 changes the horizontal direction of the scan, or vertical turnaround points where the scanner 120 changes the vertical direction of the scan.

As the scanner approaches a turnaround point and the beam accordingly traverses the periphery of the field of regard, the scan speed may decrease. The lidar system also may include two scanners, with the shared light source 110 or separate respective light sources, each scanning in opposite directions with respect to the front-facing direction of the lidar system 100 (e.g., from 0 degrees to 60 degrees and from 0 degrees to −60 degrees). In other implementations, the two scanners scan in the same direction and are offset by a predetermined phase angle. When one of the beams approaches 0 degrees or 60 degrees, the scanner 120 may slow down for example from 50 to 60 degrees and then speed up from 60 degrees on its way back to 50 degrees. In this example two-scanner implementation, one of the turnaround points of each scanner is on the axis corresponding to the front-facing direction, and may be referred to as the front-facing turnaround point, the center turnaround point, or the inner turnaround point. The other turnaround point of each scanner is at the periphery of the field of regard, and may be referred to as the side-facing turnaround point, the edge turnaround point, or the outer turnaround point.

To compensate for motor dynamics, the lidar system 100 transmits light pulses at a variable pulse rate related to the scan speed (e.g., the pulse rate decreases when the scan speed decreases and the pulse rate increases when the scan speed increases). In this manner, the light source 110 transmits light pulses uniformly across the FOR. The lidar system 100 may adjust the average power or the energy per light pulse provided by the light source 110 accordingly since a faster pulse rate may not allow for the light pulses to reach targets at the maximum range. In some implementations, the light source 110 may operate in a constant power mode, where the average power of the emitted output beam 125 remains substantially constant over a period of time. Accordingly, the amount of energy per light pulse may decrease when the pulse rate increases. Additionally, the amount of energy per light pulse may increase when the pulse rate decreases. In other implementations, the light source 110 may operate in a constant energy mode, where the amount of energy per light pulse remains substantially constant over a period of time. Accordingly, the average power of the emitted output beam 125 may increase when the pulse rate increases. Additionally, the average power of the emitted output beam 125 may decrease when the pulse rate decreases.

FIG. 15 includes graphs 910, 920 that illustrate varying the pulse rate in accordance with a scan speed of the scanner 120. The graph 910 illustrates the relationship between the scan speed of the scanner 120 and the horizontal orientation of the scanner 120. When the scanner 120 scans back and forth between −60 degrees and 60 degrees, the scan speed is lowest at these orientations. More specifically, the scan speed may go down to zero at the outer turnaround points, disposed respectively on the −60 and 60-degree axes. Then the scan speed steadily increases from −60 degrees before reaching the maximum and, in some implementations, plateauing at about 0 degrees. The scan speed then begins to decrease until the scanner 120 reaches the 60-degree turnaround point. The scan speed begins to increase again as the scanner 120 directs light pulses in the reverse-scanning direction. The graph 920 illustrates the relationship between the pulse rate and horizontal orientation of the scanner 120. The graphs 910 and 920 may be generally similar, with the pulse rate varying directly with the scan speed in this example implementation. This allows the light source 110 to transmit light pulses uniformly across the FOR.

When two scanners scan the field of view, with one scanner for example scanning between −60 degrees and the front-facing direction of zero degrees, and the other scanner scanning between zero degrees and 60 degrees, the controller 150 may vary the scan speed differently than in the single-scanner implementation. As graph 930 illustrates, the scan speed for one of the two scanners is at zero approximately at zero degrees and 60 degrees, but the first turnaround point corresponds to the front-facing direction, while the second turnaround point corresponds to the periphery of the field of view. In an example implementation, the pulse rate is at its highest at the first turnaround point and at its lowest at the second turnaround point (see graph 940). As a more specific example, the pulse rate can correspond to a sinusoid having half the frequency of the sinusoidal scan speed.

In an alternative implementation of a two-scanner system, the pulse rate is at its lowest at the first turnaround point and at its highest at the second turnaround point. In this manner, the scanners transmit light pulses uniformly across the combined field of regard.

The controller 150 may identify the scan speed and provide control signals to the light source 110 to decrease the pulse rate as the scan speed decreases and increase the pulse rate as the scan speed increases. In other implementations, the controller 150 may compare the scan speed to a threshold speed. The controller 150 then may provide a control signal to the light source 110 to adjust the pulse rate when the scan speed increases above or decreases below the threshold speed. For example, at a first scan speed the pulse rate may be 600 kHz. Then, when the scan speed exceeds a threshold speed, the pulse rate may increase to a second pulse rate (750 kHz). As the scanner 120 approaches the periphery and is about to change direction of the scan, the scan speed may drop below the threshold speed and, accordingly, the pulse rate may decrease back to the first pulse rate of 600 kHz. More generally, the controller 150 in some implementations can implement any desired number of discrete pulse rate bands (e.g., 700 kHz, 720 kHz, 750 kHz, 770 kHz).

In other implementations, the controller 150 may vary the pulse rate based on a combination of the orientation of the light pulses and the scan speed of the scanner 120. For example, when the scanner 120 directs light pulses across a horizontal FOR from 0 degrees to 60 degrees with respect to the frontal orientation of the lidar system 100, the controller 150 may increase the pulse rate or keep the pulse rate the same as the scanner 120 approaches 0 degrees and as the scan speed decreases, so as to increase the resolution or pixel density near the front of the lidar system 100. The controller 150 may then reduce the pulse rate as the scanner 120 approaches 60 degrees and as the scan speed decreases, so as to compensate for the slower scan speed. While the graphs 710, 720, 810, 820, 910, 920, 930, and 940 shown in FIGS. 13-15 illustrate the relationship between pulse rate, scan speed, and horizontal orientation, these are merely examples for ease of illustration only. The pulse rate and scan speed may also vary according to the vertical orientation of the scanner 120. For example, as the scanner approaches a vertical turnaround point and the beam accordingly traverses the periphery of the field of regard, the scan speed may decrease. As a result, the pulse rate may also decrease in accordance with the decrease in the scan speed, thereby allowing the light source 110 to transmit light pulses uniformly across the vertical FOR.

Further, the controller 150 in some implementations may adjust the pulse rate in view of the timing of previously detected pulses as well as in view of the orientation. Referring back to FIG. 12, the controller 150 may transmit pulse N+1 in response to detecting the previous pulse N, which may occur immediately or shortly after detecting the pulse N. The value of T2 corresponds to the time it takes a light pulse to travel to a target disposed at the maximum range and return to the lidar system 100, as discussed above. The controller 150 may control the duration of interval T2 in view of the current scan direction. For example, the controller 150 may adjust the duration of T2 upward or downward, depending on the implementation, when the scanner approaches an outer turnaround point. Similarly, the controller 150 may adjust the duration of T2 upward or downward, depending on the implementation, when the scanner approaches the front-facing direction.

In other implementations, such as the implementations illustrated in FIG. 3 and FIG. 4, the scan speed remains constant as the scanner 120 directs light pulses across the FOR. While the scan speed remains constant, the pulse rate may vary according to the scan direction, the timing of previously detected pulses, or in any other suitable manner. For example, the pulse rate may vary across different sectors of the FORH (e.g., 0 to 30 degrees, 30 to 60 degrees, 60 to 90 degrees, 90 to 120 degrees, etc.).

Example Method for Varying Pulse Rate

FIG. 16 depicts a flow diagram of an example method 1000 for varying the pulse rate in accordance with the scan speed of the scanner. The method 1000 may be implemented by various components of the lidar system 100 as shown in FIG. 1 including the light source 110, the scanner 120, the receiver 140, and the controller 150. For ease of illustration only, some of the steps of the method 1000 may be described below with reference to a particular component of the lidar system 100. However, each of the method steps may be implemented by any suitable component in any suitable manner. In some embodiments, the method or a portion thereof can be implemented in a set of instructions stored on a computer-readable memory and executable on one or more processors or the controller 150.

At block 1002, light pulses are emitted by the light source 110. In some implementations, the controller 150 directs the light source 110 to emit light pulses by providing instructions, a control signal, or a trigger signal to the light source 110 indicating when the light source 110 should produce optical pulses. The light pulses are then emitted at a particular pulse rate or pulse repetition frequency.

At block 1004, the emitted light pulses are directed, via the scanner 120, at various scan angles or orientations relative to a front-facing direction with respect to the lidar system 100. In this manner, the emitted light pulses are scanned across a horizontal FOR (e.g., from −60 degrees to +60 degrees with respect to the front-facing direction of the lidar system 100). In some implementations, the controller 150 provides a drive signal to the scanner 120 for rotating the scanning mirror across a horizontal FOR to direct light pulses toward different points within the horizontal FOR. Also in some implementations, the scanner 120 includes one or several scanning mirrors that rotate back and forth in the horizontal direction (e.g., from −60 degrees to +60 degrees, from −60 degrees to 0 degrees, from 0 degrees to +60 degrees, etc.). To rotate back and forth the one or several scanning mirrors slow down before coming to a stop at respective turnaround points. Then after a scanning mirror reaches a turnaround point (e.g., at 0 degrees, at ±60 degrees, etc.) and turns around, the scanning mirror speeds up and scans in the opposite direction. As shown in the graph 910 of FIG. 15, the scan speed may be zero at the outer turnaround points, disposed respectively on the −60 and +60-degree axes. Then the scan speed steadily increases from −60 degrees before reaching the maximum and, in some implementations, plateauing at about 0 degrees. The scan speed then begins to decrease until the scanner 120 reaches the +60-degree turnaround point.

The emitted light pulses may also be directed, via the scanner 120 across a vertical FOR (e.g., from −15 degrees vertical to +15 degrees vertical). In some implementations, the controller 150 provides a drive signal to the scanner 120 for rotating the same scanning mirror or another scanning mirror across a vertical FOR to direct light pulses toward different points within the vertical FOR. For example, the scanner 120 may direct light pulses across a horizontal FOR at a first vertical orientation (e.g., +15 degrees vertical) to generate a scan line. Then the scanner 120 may direct light pulses across the horizontal FOR at another vertical orientation (e.g., +14 degrees vertical) to generate another scan line. Also in some implementations, the scanner 120 includes one or several scanning mirrors that rotate back and forth in the vertical direction (e.g., from −15 degrees to +15 degrees). To rotate back and forth the one or several scanning mirrors slow down before coming to a stop at respective turnaround points. Then after a scanning mirror reaches a turnaround point (e.g., at ±15 degrees) and turns around, the scanning mirror speeds up and scans in the opposite direction. The scan speed may be zero at the turnaround points, disposed respectively on the −15 and +15-degree axes.

At block 1006, the method 1000 includes identifying the scan speed of the scanner. For example, the controller 150 may identify the scan speed by communicating with the scanner 120. In implementations in which the controller 150 provides the drive signal to the scanner 120 for rotating the scanning mirror, the controller 150 may determine the scan speed based on the drive signal.

Then at block 1008, the scan speed is compared to a threshold scan speed or one or several scan speed ranges. When the scanner rotates at a first scan speed, the light pulses may be emitted at a first pulse rate (block 1010). When the scanner rotates at a second scan speed, the light pulses may be emitted at a second pulse rate (block 1012) which is different from the first pulse rate. For example, as described above the pulse rate may be lowest when the scan speed is the highest. In another example, the pulse rate may be lowest when the scan speed is the lowest to distribute the light pulses uniformly across the field of regard. Additionally, when the scanner rotates at an nth scan speed, the light pulses may be emitted at an nth pulse rate (block 1014) which is higher than both of the first and second pulse rates when the pulse rate increases in accordance with the scan speed or lower than both of the first and second pulse rates when the pulse rate decreases in accordance with the scan speed. The light source 110 or the controller 150 also may adjust the power or energy, because a faster pulse rate may not allow for the light pulses to reach targets at the maximum range. Accordingly, the amount of power or energy may be higher for slower pulse rates.

In other implementations, the pulse rate may be varied in accordance with a combination of the scan speed of the scanner and the orientations of the light pulses. For example, the lidar system 100 may include two scanners 120 with a shared light source 110 or separate respective light sources, where the two scanners 120 scan from −60 degrees (side-facing, edge, or outer turnaround point) to 0 degrees (front-facing, center, or inner turnaround point) and from 0 degrees (front-facing, center, or inner turnaround point) to +60 degrees (side-facing, edge, or outer turnaround point), respectively. In the implementations described above, the pulse rate may decrease or increase at the turnaround points to account for the reduced scan speeds at the respective turnaround points. In an alternative implementation, the pulse rate may decrease at the outer turnaround point while increasing or remaining constant at the inner turnaround point to increase pixel density at the inner turnaround point.

In some implementations, the lidar system 100 may identify a “portion of interest” of the field of regard that is an orientation range at which to increase the pulse rate. When light pulses are directed at orientations within the identified portion of interest, the light source 110 may emit the light pulses at an increased pulse rate. Then when subsequent light pulses are directed at orientations outside of the identified portion of interest, the light source 110 may decrease the pulse rate for the subsequent light pulses. For example, the lidar system 100 may identify a portion of interest corresponding to an upcoming maneuver of the vehicle. In some implementations, the vehicle controller 372 transmits an indication of an upcoming maneuver to the lidar controller 150 or provides a request for increased resolution within a particular orientation range. The lidar controller 150 then identifies the portion of interest based on the upcoming maneuver or the request. For example, when the upcoming maneuver is a right turn, the lidar controller 150 may identify the portion of the field of regard to the right of the vehicle as the portion of interest (e.g., having an orientation range of +40 degrees to +60 degrees). Then the lidar controller 150 may provide control signals to the light source 110 to increase the pulse rate within the identified portion of interest. In these implementations, the pulse rate may increase or remain constant at a turnaround point having an orientation within the portion of interest to increase pixel density at the turnaround point.

While scan speeds are described as being compared to a threshold scan speed or threshold scan speed range, the pulse rate also may vary continuously in accordance with the scan speed. For example, the pulse rate may increase linearly as the scan speed increases, as shown in graphs 910, 920 of FIG. 15.

In some implementations, the controller 150 provides control signals to the light source 110 to adjust the pulse rate to the first pulse rate, second pulse rate, nth pulse rate, or any other suitable pulse rate. For example, when the scan speed exceeds a threshold scan speed, the controller 150 may provide a control signal to the light source 110 directing the light source 110 to switch the pulse rate from the first pulse rate to the second pulse rate.

At block 1016, light from some of the light pulses is scattered by remote targets such as the target 130, as shown in FIG. 1 and detected by the receiver 140, for example. Characteristics of the received light signals are then used to generate a point cloud having respective pixels.

General Considerations

In some cases, a computing device may be used to implement various modules, circuits, systems, methods, or algorithm steps disclosed herein. As an example, all or part of a module, circuit, system, method, or algorithm disclosed herein may be implemented or performed by a general-purpose single- or multi-chip processor, a digital signal processor (DSP), an ASIC, a FPGA, any other suitable programmable-logic device, discrete gate or transistor logic, discrete hardware components, or any suitable combination thereof. A general-purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

In particular embodiments, one or more implementations of the subject matter described herein may be implemented as one or more computer programs (e.g., one or more modules of computer-program instructions encoded or stored on a computer-readable non-transitory storage medium). As an example, the steps of a method or algorithm disclosed herein may be implemented in a processor-executable software module which may reside on a computer-readable non-transitory storage medium. In particular embodiments, a computer-readable non-transitory storage medium may include any suitable storage medium that may be used to store or transfer computer software and that may be accessed by a computer system. Herein, a computer-readable non-transitory storage medium or media may include one or more semiconductor-based or other integrated circuits (ICs) (such, as for example, field-programmable gate arrays (FPGAs) or application-specific ICs (ASICs)), hard disk drives (HDDs), hybrid hard drives (HHDs), optical discs (e.g., compact discs (CDs), CD-ROM, digital versatile discs (DVDs), blue-ray discs, or laser discs), optical disc drives (ODDs), magneto-optical discs, magneto-optical drives, floppy diskettes, floppy disk drives (FDDs), magnetic tapes, flash memories, solid-state drives (SSDs), RAM, RAM-drives, ROM, SECURE DIGITAL cards or drives, any other suitable computer-readable non-transitory storage media, or any suitable combination of two or more of these, where appropriate. A computer-readable non-transitory storage medium may be volatile, non-volatile, or a combination of volatile and non-volatile, where appropriate.

In some cases, certain features described herein in the context of separate implementations may also be combined and implemented in a single implementation. Conversely, various features that are described in the context of a single implementation may also be implemented in multiple implementations separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.

While operations may be depicted in the drawings as occurring in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all operations be performed. Further, the drawings may schematically depict one more example processes or methods in the form of a flow diagram or a sequence diagram. However, other operations that are not depicted may be incorporated in the example processes or methods that are schematically illustrated. For example, one or more additional operations may be performed before, after, simultaneously with, or between any of the illustrated operations. Moreover, one or more operations depicted in a diagram may be repeated, where appropriate. Additionally, operations depicted in a diagram may be performed in any suitable order. Furthermore, although particular components, devices, or systems are described herein as carrying out particular operations, any suitable combination of any suitable components, devices, or systems may be used to carry out any suitable operation or combination of operations. In certain circumstances, multitasking or parallel processing operations may be performed. Moreover, the separation of various system components in the implementations described herein should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems may be integrated together in a single software product or packaged into multiple software products.

Various implementations have been described in connection with the accompanying drawings. However, it should be understood that the figures may not necessarily be drawn to scale. As an example, distances or angles depicted in the figures are illustrative and may not necessarily bear an exact relationship to actual dimensions or layout of the devices illustrated.

The scope of this disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments described or illustrated herein that a person having ordinary skill in the art would comprehend. The scope of this disclosure is not limited to the example embodiments described or illustrated herein. Moreover, although this disclosure describes or illustrates respective embodiments herein as including particular components, elements, functions, operations, or steps, any of these embodiments may include any combination or permutation of any of the components, elements, functions, operations, or steps described or illustrated anywhere herein that a person having ordinary skill in the art would comprehend.

The term “or” as used herein is to be interpreted as an inclusive or meaning any one or any combination, unless expressly indicated otherwise or indicated otherwise by context. Therefore, herein, the expression “A or B” means “A, B, or both A and B.” As another example, herein, “A, B or C” means at least one of the following: A; B; C; A and B; A and C; B and C; A, B and C. An exception to this definition will occur if a combination of elements, devices, steps, or operations is in some way inherently mutually exclusive.

As used herein, words of approximation such as, without limitation, “approximately, “substantially,” or “about” refer to a condition that when so modified is understood to not necessarily be absolute or perfect but would be considered close enough to those of ordinary skill in the art to warrant designating the condition as being present. The extent to which the description may vary will depend on how great a change can be instituted and still have one of ordinary skill in the art recognize the modified feature as having the required characteristics or capabilities of the unmodified feature. In general, but subject to the preceding discussion, a numerical value herein that is modified by a word of approximation such as “approximately” may vary from the stated value by ±0.5%, ±1%, ±2%, ±3%, ±4%, ±5%, ±10%, ±12%, or ±15%.

As used herein, the terms “first,” “second,” “third,” etc. may be used as labels for nouns that they precede, and these terms may not necessarily imply a particular ordering (e.g., a particular spatial, temporal, or logical ordering). As an example, a system may be described as determining a “first result” and a “second result,” and the terms “first” and “second” may not necessarily imply that the first result is determined before the second result.

As used herein, the terms “based on” and “based at least in part on” may be used to describe or present one or more factors that affect a determination, and these terms may not exclude additional factors that may affect a determination. A determination may be based solely on those factors which are presented or may be based at least in part on those factors. The phrase “determine A based on B” indicates that B is a factor that affects the determination of A. In some instances, other factors may also contribute to the determination of A. In other instances, A may be determined based solely on B.

Claims

1. A method of controlling pulse rate in lidar systems in which a scanner scans in a forward-scanning direction and a reverse-scanning direction, to compensate for motor dynamics of the scanner, the method comprising:

generating light pulses by a light source in a lidar system;
scanning, by a scanner in the lidar system, a field of view of the light source across a field of regard of the lidar system in a forward-scanning direction and a reverse-scanning direction, including: directing the light pulses toward different points within the field of regard, and decreasing a scan speed of the scanner as the scanner changes direction between the forward-scanning direction and the reverse-scanning direction at respective turnaround points;
adjusting a pulse rate at which the lidar system generates the light pulses in accordance with the scan speed, including transmitting the light pulses at a first pulse rate for a first scan speed and at a second pulse rate for a second scan speed; and
detecting, by a receiver of the lidar system, light from some of the light pulses scattered by one or more remote targets to generate respective pixels.

2. The method of claim 1, wherein adjusting the pulse rate includes decreasing the pulse rate when decreasing the scan speed, so that the scanner distributes the light pulses uniformly across the field of regard.

3. The method of claim 1, wherein adjusting the pulse rate includes increasing the pulse rate when decreasing the scan speed, so that the pixel density is higher at a turnaround point.

4. The method of claim 1, wherein scanning across the field of regard includes using two or more scanners to concurrently illuminate two or more different portions of the field of regard, with each of the two or more scanners having an inner turnaround point and an outer turnaround point.

5. The method of claim 4, wherein adjusting the pulse rate includes increasing the pulse rate as the scanner approaches the inner turnaround point and decreasing the pulse rate as the scanner approaches the outer turnaround point.

6. The method of claim 4, wherein adjusting the pulse rate includes decreasing the pulse rate as the scanner approaches the inner turnaround point and increasing the pulse rate as the scanner approaches the outer turnaround point.

7. The method of claim 4, wherein the emitted light pulses are split to produce two or more output beams which are scanned by the respective two or more scanners.

8. The method of claim 4, wherein using two or more scanners includes scanning simultaneously in opposite directions.

9. The method of claim 4, wherein using two or more scanners includes scanning simultaneously in a same direction.

10. The method of claim 1, further comprising:

adjusting an amount of average power of the emitted light pulses or an amount of energy per light pulse provided by the light source based on the pulse rate.

11. The method of claim 10, wherein the amount energy per light pulse is higher for slower pulse rates.

12. The method of claim 1, further comprising:

identifying, using a controller, the scan speed of the scanner, and
providing a control signal to the light source to adjust the pulse rate according to the scan speed.

13. A lidar system comprising:

a light source configured to emit light pulses;
a scanner configured to scan a field of view of the light source across a field of regard of the lidar system in a forward-scanning direction and a reverse-scanning direction, including: direct the light pulses toward different points within the field of regard; and decrease a scan speed as the scanner changes direction between the forward-scanning direction and the reverse-scanning direction at respective turnaround points;
a controller configured to adjust a pulse rate at which the light pulses are emitted by the light source, including: when the scanner scan at a first scan speed, cause the light source to emit the light pulses at a first pulse rate, and when the scanner scans at a second scan speed, cause the light source to emit the light pulses at a second pulse rate; and
a detector configured to detect light from some of the light pulses scattered by one or more remote targets to generate respective pixels.

14. The lidar system of claim 13, wherein to adjust the pulse rate the controller is configured to decrease the pulse rate when the scan speed decreases, so that the scanner distributes the light pulses uniformly across the field of regard.

15. The lidar system of claim 13, wherein to adjust the pulse rate the controller is configured to increase the pulse rate when the scan speed decreases, so that the pixel density is higher in at a turnaround point.

16. The lidar system of claim 13, wherein the controller is further configured to receive an indication of the scan speed of the scanner and to provide a control signal to the light source to adjust the pulse rate in accordance with the scan speed.

17. The lidar system of claim 13, wherein the scanner includes two or more scanners to concurrently illuminate two or more different portions of the field of regard, with each of the two or more scanners having an inner turnaround point and an outer turnaround point.

18. The lidar system of claim 17, wherein for each of the two or more scanners, to adjust the pulse rate the controller is configured to increase the pulse rate as the scanner approaches the inner turnaround point and decrease the pulse rate as the scanner approaches the outer turnaround point.

19. The lidar system of claim 17, wherein for each of the two or more scanners, to adjust the pulse rate the controller is configured to decrease the pulse rate as the scanner approaches the inner turnaround point and increase the pulse rate as the scanner approaches the outer turnaround point.

20. The lidar system of claim 17, wherein the two or more scanners scan simultaneously in opposite directions.

21. The lidar system of claim 17, wherein the two or more scanners scan simultaneously in a same direction.

22. The lidar system of claim 13, wherein the controller is further configured to adjust an amount of average power of the emitted light pulses or an amount of energy per light pulse provided by the light source based on the pulse rate.

Patent History
Publication number: 20180284225
Type: Application
Filed: Jan 22, 2018
Publication Date: Oct 4, 2018
Inventors: Matthew D. Weed (Winter Park, FL), Scott R. Campbell (Sanford, FL), Lane A. Martin (Sunnyvale, CA), Jason M. Eichenholz (Orlando, FL), Austin K. Russell (Palo Alto, CA), Rodger W. Cleye (Aliso Viejo, CA), Melvin L. Stauffer (Orlando, FL)
Application Number: 15/876,669
Classifications
International Classification: G01S 7/484 (20060101); G01S 7/481 (20060101); G01S 17/08 (20060101);