Patents by Inventor Avinash Malhotra

Avinash Malhotra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9126172
    Abstract: Reforming exchangers for syngas production are provided. The reforming exchangers can have a shell-and-tube configuration and include a shift catalyst on the shell side of the exchanger to reduce a carbon monoxide concentration in a shell side product gas mixture. Processes for forming syngas using the reforming exchangers are also provided.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: September 8, 2015
    Assignee: KELLOGG BROWN & ROOT LLC
    Inventors: Shashi Singh, Kamal Gursahani, Robert Burlingame, Tim Weeks, Jim Gosnell, Avinash Malhotra
  • Publication number: 20150224463
    Abstract: Reforming exchangers for syngas production are provided. The reforming exchangers can have a shell-and-tube configuration and include a shift catalyst on the shell side of the exchanger to reduce a carbon monoxide concentration in a shell side product gas mixture. Processes for forming syngas using the reforming exchangers are also provided.
    Type: Application
    Filed: April 20, 2015
    Publication date: August 13, 2015
    Applicant: Kellogg Brown & Root LLC
    Inventors: SHASHI SINGH, Kamal Gursahani, Robert Burlingame, Tim Weeks, Jim Gosnell, Avinash Malhotra
  • Patent number: 9101899
    Abstract: Reforming exchangers for syngas production are provided. The reforming exchangers can have a shell-and-tube configuration and include a shift catalyst on the shell side of the exchanger to reduce a carbon monoxide concentration in a shell side product gas mixture. Processes for forming syngas using the reforming exchangers are also provided.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: August 11, 2015
    Assignee: KELLOGG BROWN & ROOT LLC
    Inventors: Shashi Singh, Kamal Gursahani, Robert Burlingame, Tim Weeks, Jim Gosnell, Avinash Malhotra
  • Patent number: 8889093
    Abstract: Systems and methods for producing ammonia and/or ammonia products. The ammonia and/or ammonia products can be produced by compressing a gas mixture comprising nitrogen, hydrogen, methane, and argon to produce a compressed gas mixture having a pressure of from about 1,000 kPa (130 psig) to about 10,400 kPa (1,495 psig). All or a portion of the compressed gas mixture can be selectively separated at cryogenic conditions to produce a first gas comprising nitrogen and hydrogen, and a second gas comprising methane, argon, residual hydrogen and nitrogen. At least a portion of the first gas can be reacted at conditions sufficient to produce an ammonia product.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: November 18, 2014
    Assignee: Kellogg Brown & Root LLC
    Inventors: Avinash Malhotra, James H. Gosnell, Yue Jing
  • Patent number: 8545775
    Abstract: A reforming exchanger system for syngas production is provided. The reforming exchanger system can have a first and a second reforming exchanger, each with a shell-and-tube configuration, and a shift reactor located intermediate to the first and second reforming exchangers to reduce carbon monoxide concentration in the outlet gas. Processes for forming syngas using the reforming exchanger systems described herein are also provided.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: October 1, 2013
    Assignee: Kellogg Brown & Root LLC
    Inventors: Shashi Singh, Kamal Gursahani, Robert Burlingame, Tim Weeks, Jim Gosnell, Avinash Malhotra
  • Publication number: 20130099165
    Abstract: Reforming exchangers for syngas production are provided. The reforming exchangers can have a shell-and-tube configuration and include a shift catalyst on the shell side of the exchanger to reduce a carbon monoxide concentration in a shell side product gas mixture. Processes for forming syngas using the reforming exchangers are also provided.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Applicant: Kellogg Brown & Root LLC
    Inventors: Shashi Singh, Kamal Gursahani, Robert Burlingame, Tim Weeks, Jim Gosnell, Avinash Malhotra
  • Publication number: 20130099166
    Abstract: A reforming exchanger system for syngas production is provided. The reforming exchanger system can have a first and a second reforming exchanger, each with a shell-and-tube configuration, and a shift reactor located intermediate to the first and second reforming exchangers to reduce carbon monoxide concentration in the outlet gas. Processes for forming syngas using the reforming exchanger systems described herein are also provided.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Applicant: Kellogg Brown & Root LLC
    Inventors: Shashi Singh, Kamal Gursahani, Robert Burlingame, Tim Weeks, Jim Gosnell, Avinash Malhotra
  • Patent number: 8377154
    Abstract: A gasification system and method. The system can include a gasifier and a purification unit fluidly coupled to the gasifier, with the purification unit receiving raw syngas from the gasifier and producing waste gas and a syngas product. The system can also include a first reformer fluidly coupled to the purification unit, with the first reformer receiving a first portion of the waste gas and producing reformed hydrocarbon. The system can further include a second reformer having a first inlet fluidly coupled to the purification unit, a second inlet fluidly coupled to the first reformer, and an outlet fluidly coupled to the purification unit. The second inlet can receive the reformed hydrocarbon from the first reformer, and the first inlet can receive a second portion of the waste gas from the purification unit. The second reformer can produce a recovered raw syngas that is directed to the purification unit.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: February 19, 2013
    Assignee: Kellogg Brown & Root LLC
    Inventors: Siva Ariyapadi, Kamalkumar I. Gursahani, Avinash Malhotra
  • Patent number: 8273139
    Abstract: Systems and processes for producing syngas are provided. A first hydrocarbon can be partially oxidized in the presence of an oxidant and one or more first catalysts at conditions sufficient to partially combust a portion of the first hydrocarbon to provide carbon dioxide, non-combusted first hydrocarbon, and heat. At least a portion of the non-combusted first hydrocarbon can be reformed in the presence of at least a portion of the heat generated in the partial oxidation step and the one or more first catalysts to provide a first syngas. The first syngas can comprise hydrogen, carbon monoxide, and carbon dioxide. Heat can be indirectly exchanged from the first syngas to a second hydrocarbon to reform at least a portion of the second hydrocarbon in the presence of steam and one or more second catalysts to provide a second syngas. The second syngas can comprise hydrogen, carbon monoxide, and carbon dioxide.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: September 25, 2012
    Assignee: Kellogg Brown & Root LLC
    Inventors: Avinash Malhotra, David P. Mann
  • Publication number: 20120070364
    Abstract: Systems and methods for producing ammonia and/or ammonia products. The ammonia and/or ammonia products can be produced by compressing a gas mixture comprising nitrogen, hydrogen, methane, and argon to produce a compressed gas mixture having a pressure of from about 1,000 kPa (130 psig) to about 10,400 kPa (1,495 psig). All or a portion of the compressed gas mixture can be selectively separated at cryogenic conditions to produce a first gas comprising nitrogen and hydrogen, and a second gas comprising methane, argon, residual hydrogen and nitrogen. At least a portion of the first gas can be reacted at conditions sufficient to produce an ammonia product.
    Type: Application
    Filed: September 16, 2010
    Publication date: March 22, 2012
    Applicant: Kellogg Brown & Root LLC
    Inventors: Avinash Malhotra, James H. Gosnell, Yue Jing
  • Publication number: 20110210292
    Abstract: A gasification system and method. The system can include a gasifier and a purification unit fluidly coupled to the gasifier, with the purification unit receiving raw syngas from the gasifier and producing waste gas and a syngas product. The system can also include a first reformer fluidly coupled to the purification unit, with the first reformer receiving a first portion of the waste gas and producing reformed hydrocarbon. The system can further include a second reformer having a first inlet fluidly coupled to the purification unit, a second inlet fluidly coupled to the first reformer, and an outlet fluidly coupled to the purification unit. The second inlet can receive the reformed hydrocarbon from the first reformer, and the first inlet can receive a second portion of the waste gas from the purification unit. The second reformer can produce a recovered raw syngas that is directed to the purification unit.
    Type: Application
    Filed: May 18, 2010
    Publication date: September 1, 2011
    Applicant: Kellogg Brown & Root LLC
    Inventors: Siva Ariyapadi, Kamalkumar I. Gursahani, Avinash Malhotra
  • Patent number: 7932296
    Abstract: Systems and methods for producing syngas are provided. A first hydrocarbon can be partially oxidized in the presence of an oxidant and one or more first catalysts at conditions sufficient to partially combust a portion of the first hydrocarbon to provide carbon dioxide, non-combusted first hydrocarbon, and heat. The non-combusted first hydrocarbon can be reformed in the presence of the heat generated in the partial oxidation step and the one or more first catalysts to provide a first syngas. Heat can be indirectly exchanged from the first syngas to a second hydrocarbon to reform at least a portion of the second hydrocarbon in the presence of steam and one or more second catalysts to provide a second syngas. A syngas, which can include the at least a portion of the first syngas, at least a portion of the second syngas, or a mixture thereof can be converted to provide one or more Fischer-Tropsch products, methanol, derivatives thereof, or combinations thereof.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: April 26, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventors: Avinash Malhotra, David P. Mann
  • Patent number: 7550215
    Abstract: Low-energy, low-capital hydrogen production is disclosed. A reforming exchanger 14 is placed in parallel with an autothermal reformer (ATR) 10 to which are supplied a preheated steam-hydrocarbon mixture. An air-steam mixture is supplied to the burner/mixer of the ATR 10 to obtain a syngas effluent at 650°-1050° C. The effluent from the ATR is used to heat the reforming exchanger, and combined reformer effluent is shift converted and separated into a mixed gas stream and a hydrogen-rich product stream. High capital cost equipment such as steam-methane reformer and air separation plant are not required.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: June 23, 2009
    Assignee: Kellogg Brown & Root LLC
    Inventors: Avinash Malhotra, James Hanlan Gosnell
  • Publication number: 20090064582
    Abstract: Systems and processes for producing syngas are provided. A first hydrocarbon can be partially oxidized in the presence of an oxidant and one or more first catalysts at conditions sufficient to partially combust a portion of the first hydrocarbon to provide carbon dioxide, non-combusted first hydrocarbon, and heat. At least a portion of the non-combusted first hydrocarbon can be reformed in the presence of at least a portion of the heat generated in the partial oxidation step and the one or more first catalysts to provide a first syngas. The first syngas can comprise hydrogen, carbon monoxide, and carbon dioxide. Heat can be indirectly exchanged from the first syngas to a second hydrocarbon to reform at least a portion of the second hydrocarbon in the presence of steam and one or more second catalysts to provide a second syngas. The second syngas can comprise hydrogen, carbon monoxide, and carbon dioxide.
    Type: Application
    Filed: July 18, 2008
    Publication date: March 12, 2009
    Applicant: KELLOGG BROWN & ROOT LLC
    Inventors: Avinash Malhotra, David P. Mann
  • Publication number: 20080275143
    Abstract: Systems and methods for producing syngas are provided. A first hydrocarbon can be partially oxidized in the presence of an oxidant and one or more first catalysts at conditions sufficient to partially combust a portion of the first hydrocarbon to provide carbon dioxide, non-combusted first hydrocarbon, and heat. The non-combusted first hydrocarbon can be reformed in the presence of the heat generated in the partial oxidation step and the one or more first catalysts to provide a first syngas. Heat can be indirectly exchanged from the first syngas to a second hydrocarbon to reform at least a portion of the second hydrocarbon in the presence of steam and one or more second catalysts to provide a second syngas. A syngas, which can include the at least a portion of the first syngas, at least a portion of the second syngas, or a mixture thereof can be converted to provide one or more Fischer-Tropsch products, methanol, derivatives thereof, or combinations thereof.
    Type: Application
    Filed: July 18, 2008
    Publication date: November 6, 2008
    Applicant: KELLOGG BROWN & ROOT LLC
    Inventors: Avinash Malhotra, David P. Mann
  • Publication number: 20070217989
    Abstract: Low-energy, low-capital hydrogen production is disclosed. A reforming exchanger 14 is placed in parallel with an autothermal reformer (ATR) 10 to which are supplied a preheated steam-hydrocarbon mixture. An air-steam mixture is supplied to the burner/mixer of the ATR 10 to obtain a syngas effluent at 650°-1050° C. The effluent from the ATR is used to heat the reforming exchanger, and combined reformer effluent is shift converted and separated into a mixed gas stream and a hydrogen-rich product stream. High capital cost equipment such as steam-methane reformer and air separation plant are not required.
    Type: Application
    Filed: May 21, 2007
    Publication date: September 20, 2007
    Inventors: AVINASH MALHOTRA, James Gosnell
  • Patent number: 7220505
    Abstract: Low-energy, low-capital hydrogen production is disclosed. A reforming exchanger 14 is placed in parallel with an autothermal reformer (ATR) 10 to which are supplied a preheated steam-hydrocarbon mixture. An air-steam mixture is supplied to the burner/mixer of the ATR 10 to obtain a syngas effluent at 650°-1050° C. The effluent from the ATR is used to heat the reforming exchanger, and combined reformer effluent is shift converted and separated into a mixed gas stream and a hydrogen-rich product stream. High capital cost equipment such as steam-methane reformer and air separation plant are not required.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: May 22, 2007
    Assignee: Kellogg Brown & Root LLC
    Inventors: Avinash Malhotra, James Hanlan Gosnell
  • Patent number: 7138001
    Abstract: Low-energy hydrogen production is disclosed. A reforming exchanger is placed in parallel with a partial oxidation reactor in a new hydrogen plant with improved efficiency and reduced steam export, or in an existing hydrogen plant where the hydrogen capacity can be increased by as much as 20–30 percent with reduced export of steam from the hydrogen plant.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: November 21, 2006
    Assignee: Kellogg Brown & Root LLC
    Inventors: Stanislaus A. Knez, Avinash Malhotra, David P. Mann, Martin J. Van Sickels
  • Publication number: 20060239871
    Abstract: An apparatus for purifying a raw syngas stream containing excess nitrogen and an ammonia process plant for manufacturing ammonia from syngas with excess air for reforming and nitrogen removal with low pressure losses is disclosed.
    Type: Application
    Filed: June 22, 2006
    Publication date: October 26, 2006
    Inventors: Avinash Malhotra, Tufail Ahmad, Bradley Welter
  • Patent number: 7090816
    Abstract: A process for manufacturing ammonia from syngas with excess air for reforming and nitrogen removal with low pressure losses is disclosed. Auto-refrigeration for cooling the syngas for cryogenic hydrogen enrichment is provided by expansion of a hydrogen-lean waste fluid stream from a distillation column.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: August 15, 2006
    Assignee: Kellogg Brown & Root LLC
    Inventors: Avinash Malhotra, Tufail Ahmad, Bradley Richard Welter