Patents by Inventor Avinash Malhotra

Avinash Malhotra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050013768
    Abstract: A process for manufacturing ammonia from syngas with excess air for reforming and nitrogen removal with low pressure losses is disclosed. Auto-refrigeration for cooling the syngas for cryogenic hydrogen enrichment is provided by expansion of a hydrogen-lean waste fluid stream from a distillation column.
    Type: Application
    Filed: July 17, 2003
    Publication date: January 20, 2005
    Applicant: KELLOGG BROWN AND ROOT, INC.
    Inventors: Avinash Malhotra, Tufail Ahmad, Bradley Welter
  • Patent number: 6818198
    Abstract: Recycling a portion of autothermal reformer effluent into the steam-hydrocarbon feed stream with a thermo-compressor ejector is disclosed, using the preheated feed mixture as motive fluid. Syngas recycle-motive fluid molar ratios are 0.2-1.0, selected to optimize the overall configuration. The recycle introduces hydrogen and steam into the feed, and elevates the feed temperature, for operating the reformer in a soot-free regime. There is some pressure drop between the raw feed steam-natural gas mixture and the reformer feed, which requires the raw feed mixture to be supplied at a higher pressure, but this is offset by the lower pressure drop in the process heater and other upstream and downstream equipment due to lower quantities of steam. The feed pre-heater can have a lower duty, and the upstream and downstream equipment can be reduced in size, while the size of the autothermal reformer is about the same compared to the size needed for operation without effluent recycle.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: November 16, 2004
    Assignee: Kellogg Brown & Root, Inc.
    Inventors: Shashi Prakash Singh, Avinash Malhotra
  • Publication number: 20040182002
    Abstract: Low-energy, low-capital hydrogen production is disclosed. A reforming exchanger 14 is placed in parallel with an autothermal reformer (ATR) 10 to which are supplied a preheated steam-hydrocarbon mixture. An air-steam mixture is supplied to the burner/mixer of the ATR 10 to obtain a syngas effluent at 650°-1050° C. The effluent from the ATR is used to heat the reforming exchanger, and combined reformer effluent is shift converted and separated into a mixed gas stream and a hydrogen-rich product stream. High capital cost equipment such as steam-methane reformer and air separation plant are not required.
    Type: Application
    Filed: March 12, 2004
    Publication date: September 23, 2004
    Applicant: KELLOGG BROWN AND ROOT, INC.
    Inventors: Avinash Malhotra, James Hanlan Gosnell
  • Publication number: 20040177555
    Abstract: Low-energy hydrogen production is disclosed. A reforming exchanger is placed in parallel with a partial oxidation reactor in a new hydrogen plant with improved efficiency and reduced steam export, or in an existing hydrogen plant where the hydrogen capacity can be increased by as much as 20-30 percent with reduced export of steam from the hydrogen plant.
    Type: Application
    Filed: March 15, 2004
    Publication date: September 16, 2004
    Applicant: KELLOGG BROWN AND ROOT, INC.
    Inventors: Stanislaus A. Knez, Avinash Malhotra, David P. Mann, Martin J. Van Sickels
  • Publication number: 20040057898
    Abstract: Recycling a portion of autothermal reformer effluent into the steam-hydrocarbon feed stream with a thermo-compressor ejector is disclosed, using the preheated feed mixture as motive fluid. Syngas recycle-motive fluid molar ratios are 0.2-1.0, selected to optimize the overall configuration. The recycle introduces hydrogen and steam into the feed, and elevates the feed temperature, for operating the reformer in a soot-free regime. There is some pressure drop between the raw feed steam-natural gas mixture and the reformer feed, which requires the raw feed mixture to be supplied at a higher pressure, but this is offset by the lower pressure drop in the process heater and other upstream and downstream equipment due to lower quantities of steam. The feed pre-heater can have a lower duty, and the upstream and downstream equipment can be reduced in size, while the size of the autothermal reformer is about the same compared to the size needed for operation without effluent recycle.
    Type: Application
    Filed: September 23, 2002
    Publication date: March 25, 2004
    Applicant: Kellogg Brown & Root, Inc.
    Inventors: Shashi Prakash Singh, Avinash Malhotra