Patents by Inventor Avinash N. Ananthakrishnan

Avinash N. Ananthakrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9405345
    Abstract: In an embodiment, a processor includes at least one core to execute instructions and a power controller coupled to the core. The power controller may include a power envelope control logic to receive a plurality of power envelope parameters and to enable a power consumption level of the processor to exceed a power burst threshold for a portion of a time window. This portion may be determined according to a length of the time window and a duty cycle, where the power envelope parameters are programmed for a system including the processor and include the power burst threshold, the time window, and the duty cycle. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: August 2, 2016
    Assignee: Intel Corporation
    Inventors: Avinash N. Ananthakrishnan, Stephen H. Gunther, Jeremy J. Shrall
  • Patent number: 9372524
    Abstract: In one embodiment, the present invention includes a multicore processor having a power controller with logic to dynamically switch a power management policy from a power biased policy to a performance biased policy when a utilization of the processor exceeds a threshold level. Thus at low utilizations, reduced power consumption can be realized, while at higher utilizations, greater performance can be realized. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: June 21, 2016
    Assignee: Intel Corporation
    Inventors: Krishnakanth V. Sistla, Mark Rowland, Ankush Varma, Ian M. Steiner, Matthew Bace, Daniel Borkowski, Vivek Garg, Cagdas Akturan, Avinash N. Ananthakrishnan
  • Patent number: 9354692
    Abstract: In one embodiment, the present invention includes a processor having multiple domains including at least a core domain and a non-core domain that is transparent to an operating system (OS). The non-core domain can be controlled by a driver. In turn, the processor further includes a memory interconnect to interconnect the core domain and the non-core domain to a memory coupled to the processor. Still further, a power controller, which may be within the processor, can control a frequency of the memory interconnect based on memory boundedness of a workload being executed on the non-core domain. Other embodiments are described and claimed.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: May 31, 2016
    Assignee: Intel Corporation
    Inventors: Avinash N. Ananthakrishnan, Inder M. Sodhi, Efraim Rotem, Doron Rajwan, Eliezer Weissmann, Ryan Wells
  • Patent number: 9292068
    Abstract: In one embodiment, the present invention includes a multicore processor with a power controller to control a frequency at which the processor operates. More specifically, the power controller can limit a maximum operating frequency of the processor to less than a configured maximum operating frequency to enable a reduction in a number of frequency transitions occurring responsive to power state events, thus avoiding the overhead of operations performed in handling such transitions. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 22, 2016
    Assignee: Intel Corporation
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Doron Rajwan, Eliezer Weissmann, Ryan Wells, Nadav Shulman
  • Patent number: 9268393
    Abstract: In an embodiment, a processor includes a plurality of cores each to independently execute instructions, a plurality of graphics engines each to independently perform graphics operations; and, a power control unit coupled to the plurality of cores to control power consumption of the processor, where the power control unit includes a power excursion control logic to limit a power consumption level of the processor from being above a defined power limit for more than a duty cycle portion of an operating period. Other embodiments are described and claimed.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: February 23, 2016
    Assignee: Intel Corporation
    Inventors: Ankush Varma, Krishnakanth Sistla, Martin T. Rowland, Brian J. Griffith, Viktor D. Vogman, Joseph R. Doucette, Eric J. Dehaemer, Vivek Garg, Chris Poirier, Jeremy J. Shrall, Avinash N. Ananthakrishnan, Stephen H. Gunther
  • Publication number: 20160026229
    Abstract: In one embodiment, the present invention includes a method for determining that a non-core domain of a multi-domain processor is not operating at a frequency requested by the non-core domain, sending a request from the non-core domain to a power controller to reduce a frequency of a core domain of the multi-domain processor, and responsive to the request, reducing the core domain frequency. Other embodiments are described and claimed.
    Type: Application
    Filed: October 6, 2015
    Publication date: January 28, 2016
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Doron Rajwan, Jeremy J. Shrall, Eric C. Samson, Eliezer Weissmann, Ryan Wells
  • Publication number: 20160011975
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Application
    Filed: August 31, 2015
    Publication date: January 14, 2016
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Patent number: 9235254
    Abstract: In one embodiment, the present invention includes a method for determining, in a controller of a multi-domain processor, whether a temperature of a second domain of the multi-domain processor is greater than a sum of a throttle threshold and a cross-domain margin, and if so, reducing a frequency of a first domain of the multi-domain processor by a selected amount. In this way, a temperature of the second domain can be allowed to reduce, given a thermal coupling of the domains. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: January 12, 2016
    Assignee: Intel Corporation
    Inventors: Avinash N. Ananthakrishnan, Tomer Ziv, Doron Rajwan, Efraim Rotem
  • Publication number: 20160004291
    Abstract: In one embodiment, the present invention includes a processor having a core and a power controller to control power management features of the processor. The power controller can receive an energy performance bias (EPB) value from the core and access a power-performance tuning table based on the value. Using information from the table, at least one setting of a power management feature can be updated. Other embodiments are described and claimed.
    Type: Application
    Filed: September 16, 2015
    Publication date: January 7, 2016
    Inventors: Krishnakanth V. Sistla, Jeremy Shrall, Stephen H. Gunther, Efraim Rotem, Alon Naveh, Eliezer Weissmann, Anil Aggarwal, Martin T. Rowland, Ankush Varma, Ian M. Steiner, Matthew Bace, Avinash N. Ananthakrishnan, Jason Brandt
  • Publication number: 20150363212
    Abstract: A processor may include a cause agnostic frequency dither filter (FD filter), which may cause reduction in the frequency transitions while maintaining the performance levels. The FD Filter may minimize the performance loss, which may otherwise accrue from these frequency transitions, while trying to maximize the peak frequency of the processor. The FD filter may determine a minimum and maximum limit, which may be used by a power management unit (PMU) to restrict the number of frequency transitions to be within a specified threshold. The FD filter may determine the maximum and minimum limits based on transition data stored in internal tables captured during one or more time windows (or observation windows). Based on an average system behavior, the PMU may either apply the minimum or the maximum limit over the subsequent time window.
    Type: Application
    Filed: June 16, 2014
    Publication date: December 17, 2015
    Inventors: NIKHIL GUPTA, AMEYA AMBARDEKAR, AVINASH N. ANANTHAKRISHNAN, IAN M. STEINER
  • Patent number: 9189046
    Abstract: In an embodiment, a processor includes a first domain with at least one core to execute instructions and a second domain coupled to the first domain and including at least one non-core circuit. These domains can operate at independent frequencies, and a power control unit coupled to the domains may include a thermal logic to cause a reduction in a frequency of the first domain responsive to occurrence of a thermal event in the second domain. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: November 17, 2015
    Assignee: Intel Corporation
    Inventors: Xiuting C. Man, Michael N. Derr, Jay D. Schwartz, Stephen H. Gunther, Jeremy J. Shrall, Shaun M. Conrad, Avinash N. Ananthakrishnan
  • Patent number: 9176565
    Abstract: In one embodiment, the present invention includes a method for determining that a non-core domain of a multi-domain processor is not operating at a frequency requested by the non-core domain, sending a request from the non-core domain to a power controller to reduce a frequency of a core domain of the multi-domain processor, and responsive to the request, reducing the core domain frequency. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: November 3, 2015
    Assignee: Intel Corporation
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Doron Rajwan, Jeremy J. Shrall, Eric C. Samson, Eliezer Weissmann, Ryan Wells
  • Patent number: 9170624
    Abstract: In one embodiment, the present invention includes a processor having a core and a power controller to control power management features of the processor. The power controller can receive an energy performance bias (EPB) value from the core and access a power-performance tuning table based on the value. Using information from the table, at least one setting of a power management feature can be updated. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: October 27, 2015
    Assignee: Intel Corporation
    Inventors: Krishnakanth V. Sistla, Jeremy Shrall, Stephen H. Gunther, Efraim Rotem, Alon Naveh, Eliezer Weissmann, Anil Aggarwal, Martin T. Rowland, Ankush Varma, Ian M. Steiner, Matthew Bace, Avinash N. Ananthakrishnan, Jason Brandt
  • Patent number: 9158693
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: October 13, 2015
    Assignee: Intel Corporation
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Publication number: 20150269108
    Abstract: Techniques and mechanisms for configuring an integrated circuit (IC) chip to implement a protocol stack. In an embodiment, a transaction layer of the IC chip is operable to exchange with a link layer of the IC chip transaction layer packets (TLPs) having a format compatible with one defined in a Peripheral Component Interconnect Express™ (PCIe™) specification. Configuration circuitry of the IC chip provides for configuration of a first protocol stack including the transaction layer, circuitry of the link layer and a first physical layer of the IC chip. The configuration circuitry further provides for an alternative configuration of a second protocol stack including the transaction layer, circuitry of the link layer and a second physical layer of the IC chip. In another embodiment, the first protocol stack supports single-ended signaling to communicate TLP information, whereas the second protocol stack supports differential signaling to communicate TLP information.
    Type: Application
    Filed: March 13, 2015
    Publication date: September 24, 2015
    Inventors: Bryan L. Spry, Marcus W. Song, Deepak M. Rangaraj, Avinash N. Ananthakrishnan, Robert J. Hayes, Aimee D. Wood, Adam E. Letendre, Brent R. Boswell
  • Patent number: 9141166
    Abstract: An apparatus, method and system is described herein for dynamic power control of a power domain. A power limit over a time window is provided. And over a control loop period a power interface determines energy consumption of the power domain, intelligently budgets power among devices within the power domain based on the energy consumption, converts those budgets to performance maximums for the power domain, and limits performance of devices in the power domain to the performance maximums utilizing a running average power limit.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: September 22, 2015
    Assignee: Intel Corporation
    Inventors: Krishnakanth V. Sistla, Martin T. Rowland, Cesar A. Quiroz, Joseph R. Doucette, Gopikrishna Jandhyala, Kai Cheng, Celeste M. Brown, Avinash N. Ananthakrishnan
  • Publication number: 20150241949
    Abstract: One embodiment of an apparatus includes a semiconductor chip having a processor and an on-die non-volatile storage resource. The on-die non-volatile storage may store different, appropriate performance related information for different configurations and usage cases of the processor for a same performance state of the processor.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 27, 2015
    Inventors: Ankush Varma, Krishnakanth V. Sistla, Martin T. Rowland, Chris Poirier, Eric J. Dehaemer, Avinash N. Ananthakrishnan, Jeremy J. Shrall, Xiuting C. Man, Stephen H. Gunther, Krishna K. Rangan, Devadatta V. Bodas, Don Soltis, Hang T. Nguyen, Cyprian W. Woo, Thi Dang
  • Publication number: 20150241954
    Abstract: A processor is described that includes a plurality of execution units in a processor core. The processor also may include power management circuitry to determine a configuration with a lowest power cost from a plurality of configurations that each have a different number of enabled execution units for a same active performance state. A method may include determining with power management circuitry of a processor a configuration with a lowest power cost from a plurality of configurations that each have a different number of enabled execution units in a processor core of the processor for a same active performance state.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 27, 2015
    Inventors: Avinash N. Ananthakrishnan, Julien Sebot, Jay D. Schwartz, Stephen H. Gunther, Eric C. Samson
  • Patent number: 9098261
    Abstract: In one embodiment, the present invention includes a processor having a core and a power controller to control power management features of the processor. The power controller can receive an energy performance bias (EPB) value from the core and access a power-performance tuning table based on the value. Using information from the table, at least one setting of a power management feature can be updated. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: August 4, 2015
    Assignee: Intel Corporation
    Inventors: Krishnakanth V. Sistla, Jeremy Shrall, Stephen H. Gunther, Efraim Rotem, Alon Naveh, Eliezer Weissmann, Anil Aggarwal, Martin T. Rowland, Ankush Varma, Ian M. Steiner, Matthew Bace, Avinash N. Ananthakrishnan, Jason Brandt
  • Patent number: 9081557
    Abstract: In one embodiment, the present invention includes a method for determining a power budget for a multi-domain processor for a current time interval, determining a portion of the power budget to be allocated to first and second domains of the processor, and controlling a frequency of the domains based on the allocated portions. Such determinations and allocations can be dynamically performed during runtime of the processor. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: July 14, 2015
    Assignee: Intel Corporation
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Doron Rajwan, Eliezer Weissmann, Nadav Shulman