Patents by Inventor Aydin Babakhani

Aydin Babakhani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170357220
    Abstract: Ultra-short pulse detection. At least some example embodiments are methods including: receiving by an antenna a series of ultra-short pulses of electromagnetic energy at a repetition frequency, the receiving creates a pulse signal; self-mixing or intermodulating the pulse signal by applying the pulse signal to a non-linear electrical device, thereby creating a modulated signal; and filtering the modulated signal to recover a filtered signal having an intermodulated frequency being the repetition frequency.
    Type: Application
    Filed: June 13, 2017
    Publication date: December 14, 2017
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Aydin Babakhani, Babak Jamali
  • Publication number: 20170250793
    Abstract: A novel nonlinear impulse sampler is presented that provides a clock sharpening circuit, sampling stage, and post-sampling block. The clock sharpening circuit sharpens the incoming clock while acting as a buffer, and the sharpened clock is fed to the input of the sampling stage. The impulse sampling stage has two main transistors, where one transistor generates the impulse and the other transistor samples the input signal. Post-sampling block processes the sampled signal and acts as a sample and hold circuit. The architecture uses an ultrafast transmission-line based inductive peaking technique to turn on a high-speed sampling bipolar transistor for a few picoseconds. It is shown that the sampler can detect impulses as short as 100psec or less.
    Type: Application
    Filed: February 25, 2017
    Publication date: August 31, 2017
    Applicant: William Marsh Rice University
    Inventors: Himanshu Aggrawal, Aydin Babakhani
  • Publication number: 20170242091
    Abstract: An integrated electron spin resonance (ESR) circuit chip includes a chip substrate, a transmitter circuit, and a receiver circuit. The transmitter circuit and receiver circuit are disposed on the chip substrate. The transmitter circuit includes an oscillator circuit configured to generate an oscillating output signal and a power amplifier (PA) circuit configured to generate an amplified oscillating output signal based on the oscillating output signal. The receiver circuit receives an ESR signal from an ESR probe. The receiver circuit includes a receiver amplifier circuit configured to generate an amplified ESR signal based on the received ESR signal, a mixer circuit configured to receive the amplified ESR signal and to down-convert the amplified ESR signal to a baseband signal, and a baseband amplifier circuit configured to generate an amplified baseband signal based on the baseband signal.
    Type: Application
    Filed: May 10, 2017
    Publication date: August 24, 2017
    Applicant: William Marsh Rice University
    Inventors: Xuebei Yang, Charles Chen, Payam Seifi, Aydin Babakhani
  • Publication number: 20170204721
    Abstract: Systems and methods for fracture mapping may utilize frequency changing to aid in providing high-resolution mapping. Integrated chips may be injected into a well and dispersed into a formation. A downhole tool that provides a transmitter and receiver may be positioned in the well. The transmitter may transmit electromagnetic (EM) signals into the formation. The dispersed integrated chips may receive the transmitted EM signal and return a frequency-changed signal to the receiver of the downhole tool. Utilizing the returned frequency changed signal, the system is able to determine the locations of the integrated chips that have been dispersed into the formation and provide fracture mapping.
    Type: Application
    Filed: March 5, 2015
    Publication date: July 20, 2017
    Applicant: William Marsh Rice University
    Inventor: Aydin Babakhani
  • Publication number: 20170204719
    Abstract: A well monitoring system may provide a plurality of integrated chips dispersed in cement surrounding a well casing. Each of the integrated chips may provide energy harvesting circuitry, EM transceiver, modulator, additional sensor(s), processor or microprocessor, memory, power source, or the like. Upon analyzing data gather from the sensor(s), emitted and detected EM waves, the system may provide information about the cement thickness at different parts of the well, cement setting/curing, local electrical permittivity, local magnetic permeability, temperature, pressure, pH, local NMR spectrum, local ESR spectrum, local florescence response, local porosity, local permeability, etc. Further, the integrated chips may be utilized to transmit/receive the abovementioned data, other data (e.g. command data, power signal, etc.), or the like to/from the main transceiver.
    Type: Application
    Filed: July 31, 2015
    Publication date: July 20, 2017
    Applicant: William Marsh Rice University
    Inventor: Aydin Babakhani
  • Publication number: 20170192172
    Abstract: According to an aspect of the present principles, methods are provided for fabricating an integrated structure. A method includes forming a very large scale integration (VLSI) structure including a semiconductor layer at a top of the VLSI structure. The method further includes mounting the VLSI structure to a support structure. The method additionally includes removing at least a portion of the semiconductor layer from the VLSI structure. The method also includes attaching an upper layer to the top of the VLSI structure. The upper layer is primarily composed of a material that has at least one of a higher resistivity or a higher transparency than the semiconductor layer. The upper layer includes at least one hole for at least one of a photonic device or an electronic device. The method further includes releasing said VLSI structure from the support structure.
    Type: Application
    Filed: March 23, 2017
    Publication date: July 6, 2017
    Inventors: Aydin Babakhani, Steven A. Cordes, Jean-Olivier Plouchart, Scott K. Reynolds, Peter J. Sorce, Robert E. Trzcinski
  • Patent number: 9689954
    Abstract: An integrated electron spin resonance (ESR) circuit chip includes a chip substrate, a transmitter circuit, and a receiver circuit. The transmitter circuit and receiver circuit are disposed on the chip substrate. The transmitter circuit includes an oscillator circuit configured to generate an oscillating output signal and a power amplifier (PA) circuit configured to generate an amplified oscillating output signal based on the oscillating output signal. The receiver circuit receives an ESR signal from an ESR probe. The receiver circuit includes a receiver amplifier circuit configured to generate an amplified ESR signal based on the received ESR signal, a mixer circuit configured to receive the amplified ESR signal and to down-convert the amplified ESR signal to a baseband signal, and a baseband amplifier circuit configured to generate an amplified baseband signal based on the baseband signal.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: June 27, 2017
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Xuebei Yang, Charles Chen, Payam Seifi, Aydin Babakhani
  • Patent number: 9632251
    Abstract: According to an aspect of the present principles, methods are provided for fabricating an integrated structure. A method includes forming a very large scale integration (VLSI) structure including a semiconductor layer at a top of the VLSI structure. The method further includes mounting the VLSI structure to a support structure. The method additionally includes removing at least a portion of the semiconductor layer from the VLSI structure. The method also includes attaching an upper layer to the top of the VLSI structure. The upper layer is primarily composed of a material that has at least one of a higher resistivity or a higher transparency than the semiconductor layer. The upper layer includes at least one hole for at least one of a photonic device or an electronic device. The method further includes releasing said VLSI structure from the support structure.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: April 25, 2017
    Assignee: International Business Machines Corporation
    Inventors: Aydin Babakhani, Steven A. Cordes, Jean-Olivier Plouchart, Scott K. Reynolds, Peter J. Sorce, Robert E. Trzcinski
  • Publication number: 20170068050
    Abstract: According to an aspect of the present principles, methods are provided for fabricating an integrated structure. A method includes forming a very large scale integration (VLSI) structure including a semiconductor layer at a top of the VLSI structure. The method further includes mounting the VLSI structure to a support structure. The method additionally includes removing at least a portion of the semiconductor layer from the VLSI structure. The method also includes attaching an upper layer to the top of the VLSI structure. The upper layer is primarily composed of a material that has at least one of a higher resistivity or a higher transparency than the semiconductor layer. The upper layer includes at least one hole for at least one of a photonic device or an electronic device. The method further includes releasing said VLSI structure from the support structure.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Inventors: Aydin Babakhani, Steven A. Cordes, Jean-Olivier Plouchart, Scott K. Reynolds, Peter J. Sorce, Robert E. Trzcinski
  • Publication number: 20160380754
    Abstract: Systems and methods providing wireless synchronization of wave arrays may include an antenna that receives a wireless injection signal and another antenna that radiates a locked wave signal corresponding to the injection signal. In some embodiments, these systems may also provide a low noise amplifier, voltage controlled oscillator (VCO), buffer amplifier(s), phase shifter, and/or multi-stage amplifier. In some embodiments, the injection signal may be provided on an even harmonic, and the intended transmission frequency signal is on an odd harmonic of the locked signal. The substrate thickness may be designed to radiate electromagnetic waves in odd harmonics of the locked signal. In yet another embodiment, polarization of a receiving antenna may be orthogonal to a transmitter antenna.
    Type: Application
    Filed: May 17, 2016
    Publication date: December 29, 2016
    Applicant: William Marsh Rice University
    Inventors: Charles Chen, Aydin Babakhani
  • Publication number: 20160344108
    Abstract: A fully-programmable digital-to-impulse radiator with a programmable delay is discussed herein. The impulse radiator may be part of an array of impulse radiators. Each individual element of the array may be equipped with an integrated programmable delay that can shift the timing of a digital trigger. The digital trigger may be fed to an amplifier, switch, and impulse matching circuitry, whereas the data signal path may be provided from a separate path. An antenna coupled to the impulse matching circuitry may then radiate ultra-short impulses. The radiating array may provide the ability to control delay at each individual element, perform near-ideal spatial combing, and/or beam steering.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 24, 2016
    Applicant: William Marsh Rice University
    Inventors: Mohammad Mahdi Assefzadeh, Aydin Babakhani
  • Publication number: 20160223478
    Abstract: An Electron Paramagnetic resonance (EPR) system and method allows the measurement paramagnetic characteristics of materials in real-time, such as heavy oil, hydrocarbons, asphaltenes, heptane, vanadium, resins, drilling fluid, mud, wax deposits or the like. The EPR systems and methods discussed herein are low cost, small and light weight, making them usable in flow-assurance or logging applications. The EPR sensor is capable of measuring paramagnetic properties of materials from a distance of several inches. In some embodiments, a window will be used to separate the EPR sensor from the materials in a pipeline or wellbore. Since the sensor does need to be in direct contact with the materials, it can operate at a lower temperature or pressure. In other embodiments, the EPR sensor may be placed in the materials.
    Type: Application
    Filed: September 25, 2014
    Publication date: August 4, 2016
    Applicant: William Marsh Rice University
    Inventors: Aydin Babakhani, Xuebei Yang
  • Publication number: 20160223669
    Abstract: A radar system may comprise a trigger, driver, switching circuit, and antenna for generating an ultra-short impulse without utilizing an oscillator. A radar imaging system for imaging a formation or a cross section of a pipeline may include at least one radar sensor. The system may transmit a high-frequency, short impulse signal to a formation or pipeline and measure a reflected signal. A high speed impulse generator may allow the short impulse signals to be generated. This impulse generator may utilize a switching circuit and digital driver to provide the short impulse signals. The images provide useful information about complex permittivity of the formation, the geometry of the pipeline, deposition thickness of asphaltenes and wax, velocity of the fluid, as well as size, type, concentration of gas bubbles, water, or solid particles in the flow, or combinations thereof.
    Type: Application
    Filed: September 29, 2014
    Publication date: August 4, 2016
    Applicant: William Marsh Rice University
    Inventors: M. Mahdi Assefzadeh, Aydin Babakhani
  • Patent number: 9268017
    Abstract: Systems and method for near-field millimeter wave imaging are provided, in particular, near-field millimeter wave imaging systems and methods that enable sub-wavelength resolution imaging by scanning objects with sub-wavelength probe elements and capturing and measuring phase and intensity of reflected energy to generate images.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: February 23, 2016
    Assignee: International Business Machines Corporation
    Inventors: Aydin Babakhani, Duixian Liu, Scott K. Reynolds, Mihai A. Sanduleanu
  • Patent number: 9246505
    Abstract: An active cancellation system may provide a first and second transmission gates that are fed with an input signal and a complimentary signal, respectively. The first transmission gate may be switched on/off, and a second transmission gate may remain off at all times. When switched off, the first transmission gate may provide a leakage signal resulting from leakage in current, especially at high input frequencies, which is detrimental to performance. The complimentary signal fed to the second transmission gate is out of phase with the input signal, but identical in amplitude. Thus, second transmission gate may output a signal that can cancel out the leakage signal from the first transmission gate.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: January 26, 2016
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Himanshu Aggrawal, Aydin Babakhani
  • Patent number: 9203455
    Abstract: An apparatus and method enable a full duplex system with self-interference cancellation. Receiving circuitry forming a signal receiving path is arranged for transferring communication signals received via air interface. Transmitting circuitry forming a signal transmission path is arranged for transferring communication signals to be transmitted via air interface. Interference cancellation circuitry is in operable connection between the signal receiving path and the signal transmission path. The receiving circuitry and the transmitting circuitry are arranged to receive and transmit communication signals at the same time and at the same frequency. The interference cancellation circuitry comprises resistance, inductance and capacitance arranged to constitute a center frequency of an isolation range between the signal receiving path and the signal transmission path which substantially falls into the center of a communication band for the signals received and/or to be transmitted via air interface.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: December 1, 2015
    Assignee: BROADCOM CORPORATION
    Inventors: Tulong Yang, Charles Chen, Aydin Babakhani
  • Publication number: 20150285998
    Abstract: According to an aspect of the present principles, methods are provided for fabricating an integrated structure. A method includes forming a very large scale integration (VLSI) structure including a semiconductor layer at a top of the VLSI structure. The method further includes mounting the VLSI structure to a support structure. The method additionally includes removing at least a portion of the semiconductor layer from the VLSI structure. The method also includes attaching an upper layer to the top of the VLSI structure. The upper layer is primarily composed of a material that has at least one of a higher resistivity or a higher transparency than the semiconductor layer. The upper layer includes at least one hole for at least one of a photonic device or an electronic device. The method further includes releasing said VLSI structure from the support structure.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 8, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Aydin Babakhani, Steven A. Cordes, Jean-Olivier Plouchart, Scott K. Reynolds, Peter J. Sorce, Robert E. Trzcinski
  • Publication number: 20150229319
    Abstract: An active cancellation system may provide a first and second transmission gates that are fed with an input signal and a complimentary signal, respectively. The first transmission gate may be switched on/off, and a second transmission gate may remain off at all times. When switched off, the first transmission gate may provide a leakage signal resulting from leakage in current, especially at high input frequencies, which is detrimental to performance. The complimentary signal fed to the second transmission gate is out of phase with the input signal, but identical in amplitude. Thus, second transmission gate may output a signal that can cancel out the leakage signal from the first transmission gate.
    Type: Application
    Filed: January 14, 2015
    Publication date: August 13, 2015
    Applicant: William Marsh Rice University
    Inventors: Himanshu Aggrawal, Aydin Babakhani
  • Patent number: 8957810
    Abstract: Systems and method for near-field millimeter wave imaging are provided, in particular, near-field millimeter wave imaging systems and methods that enable sub-wavelength resolution imaging by scanning objects with sub-wavelength probe elements and capturing and measuring phase and intensity of reflected energy to generate images.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: February 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Aydin Babakhani, Duixian Liu, Scott K. Reynolds, Mihai A. Sanduleanu
  • Publication number: 20140097842
    Abstract: A method includes generating, from an integrated oscillator circuit, an oscillating output signal and generating, by an integrated power amplifier (PA) circuit, an amplified oscillating output signal based on the oscillating output signal. The method further includes receiving, by integrated receiver amplifier circuit, an electron spin resonance (ESR) signal from biological samples that include a magnetic species and generating, by the integrated receiver amplifier circuit, an amplified ESR signal based on the received ESR signal. The method further includes receiving, by the integrated receiver amplifier circuit, an electron spin resonance (ESR) signal from magnetic nanoparticles that are loaded with drugs or attached to human cells.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 10, 2014
    Applicant: William Marsh Rice University
    Inventors: Xuebei Yang, Charles Chen, Payam Seifi, Aydin Babakhani