Patents by Inventor Aydin Babakhani

Aydin Babakhani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140097842
    Abstract: A method includes generating, from an integrated oscillator circuit, an oscillating output signal and generating, by an integrated power amplifier (PA) circuit, an amplified oscillating output signal based on the oscillating output signal. The method further includes receiving, by integrated receiver amplifier circuit, an electron spin resonance (ESR) signal from biological samples that include a magnetic species and generating, by the integrated receiver amplifier circuit, an amplified ESR signal based on the received ESR signal. The method further includes receiving, by the integrated receiver amplifier circuit, an electron spin resonance (ESR) signal from magnetic nanoparticles that are loaded with drugs or attached to human cells.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 10, 2014
    Applicant: William Marsh Rice University
    Inventors: Xuebei Yang, Charles Chen, Payam Seifi, Aydin Babakhani
  • Publication number: 20140091802
    Abstract: An integrated electron spin resonance (ESR) circuit chip includes a chip substrate, a transmitter circuit, and a receiver circuit. The transmitter circuit and receiver circuit are disposed on the chip substrate. The transmitter circuit includes an oscillator circuit configured to generate an oscillating output signal and a power amplifier (PA) circuit configured to generate an amplified oscillating output signal based on the oscillating output signal. The receiver circuit receives an ESR signal from an ESR probe. The receiver circuit includes a receiver amplifier circuit configured to generate an amplified ESR signal based on the received ESR signal, a mixer circuit configured to receive the amplified ESR signal and to down-convert the amplified ESR signal to a baseband signal, and a baseband amplifier circuit configured to generate an amplified baseband signal based on the baseband signal.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Applicant: William Marsh Rice University
    Inventors: Xuebei Yang, Charles Chen, Payam Seifi, Aydin Babakhani
  • Publication number: 20140050124
    Abstract: An apparatus and method enable a full duplex system with self-interference cancellation. Receiving circuitry forming a signal receiving path is arranged for transferring communication signals received via air interface. Transmitting circuitry forming a signal transmission path is arranged for transferring communication signals to be transmitted via air interface. Interference cancellation circuitry is in operable connection between the signal receiving path and the signal transmission path. The receiving circuitry and the transmitting circuitry are arranged to receive and transmit communication signals at the same time and at the same frequency. The interference cancellation circuitry comprises resistance, inductance and capacitance arranged to constitute a center frequency of an isolation range between the signal receiving path and the signal transmission path which substantially falls into the center of a communication band for the signals received and/or to be transmitted via air interface.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 20, 2014
    Applicant: Renesas Mobile Corporation
    Inventors: Tulong Yang, Charles Chen, Aydin Babakhani
  • Patent number: 8482463
    Abstract: The invention relates to an antenna structure for coupling electromagnetic energy between a chip and an off-chip element, including a first resonant structure disposed on or in a chip. The first resonant structure is configured to have a first resonant frequency. The antenna structure also includes a second resonant structure disposed on or in an off-chip element. The second resonant structure is configured to have a second resonant frequency substantially the same as the first resonant frequency. The first resonant structure and the second resonant structure are mutually disposed within a near field distance of each other to form a coupled antenna structure that is configured to couple electromagnetic energy between the chip and the off-chip element. The electromagnetic energy has a selected wavelength in a wavelength range from microwave to sub-millimeter wave. The invention also relates to a method of calculating dimensions for a highly coupled antenna structure.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: July 9, 2013
    Assignee: California Institute of Technology
    Inventors: Aydin Babakhani, Seyed Ali Hajimiri
  • Publication number: 20130027243
    Abstract: Systems and method for near-field millimeter wave imaging are provided, in particular, near-field millimeter wave imaging systems and methods that enable sub-wavelength resolution imaging by scanning objects with sub-wavelength probe elements and capturing and measuring phase and intensity of reflected energy to generate images.
    Type: Application
    Filed: July 10, 2012
    Publication date: January 31, 2013
    Applicant: International Business Machines Corporation
    Inventors: Aydin Babakhani, Duixian Liu, Scott K. Reynolds, Mihai A. Sanduleanu
  • Publication number: 20130027244
    Abstract: Systems and method for near-field millimeter wave imaging are provided, in particular, near-field millimeter wave imaging systems and methods that enable sub-wavelength resolution imaging by scanning objects with sub-wavelength probe elements and capturing and measuring phase and intensity of reflected energy to generate images.
    Type: Application
    Filed: August 31, 2012
    Publication date: January 31, 2013
    Applicant: International Business Machines Corporation
    Inventors: Aydin Babakhani, Duixian Liu, Scott K. Reynolds, Mihai A. Sanduleanu
  • Patent number: 8319549
    Abstract: An integrated power amplifier includes a divider and a combiner. The integrated power amplifier also includes two or more amplifiers. Each of the amplifier input terminals is electrically coupled to a divider output terminal and each of the amplifier output terminals is electrically coupled to a combiner input terminal. At least one power sensor is configured to provide a power amplifier performance metric. The divider and the combiner include a plurality of actuators. Each actuator has at least one actuator control terminal which is configured to provide an actuator setting. The actuators are configured via the actuator control terminals to optimize the power amplifier performance metric. Methods to simulate the operation of a self-healing power amplifier and a process for the operation of a self-healing circuit are also described.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: November 27, 2012
    Assignee: California Institute of Technology
    Inventors: Kaushik Sengupta, Steven Bowers, Aydin Babakhani, Arthur H. Chang, Seyed Ali Hajimiri
  • Patent number: 8073392
    Abstract: The invention is a radio transmitter that includes an antenna having at least one driven element and at least one reflector element. The driven element is electrically coupled to a radio carrier source. At least one of the driven elements or the at least one reflector element, includes at least one switch to modulate the radio carrier. Also, a secure communication system includes a radio transmitter configured to transmit a modulated signal within an information beam width. Also, a method for modulating a radio signal includes the steps of causing the transmitted carrier signal to be modulated by the modulation signal in response to switching the at least one reflector switch. Also, a method for selecting desirable antenna reflector switch combinations includes performing a mathematical simulation to determine whether the combination of reflector switch positions results in a modulated signal that can be demodulated within an information beam width.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: December 6, 2011
    Assignee: California Institute of Technology
    Inventors: Aydin Babakhani, David B. Rutledge, Seyed Ali Hajimiri
  • Publication number: 20110140772
    Abstract: An integrated power amplifier includes a divider and a combiner. The integrated power amplifier also includes two or more amplifiers. Each of the amplifier input terminals is electrically coupled to a divider output terminal and each of the amplifier output terminals is electrically coupled to a combiner input terminal. At least one power sensor is configured to provide a power amplifier performance metric. The divider and the combiner include a plurality of actuators. Each actuator has at least one actuator control terminal which is configured to provide an actuator setting. The actuators are configured via the actuator control terminals to optimize the power amplifier performance metric. Methods to simulate the operation of a self-healing power amplifier and a process for the operation of a self-healing circuit are also described.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 16, 2011
    Applicant: California Institute of Technology
    Inventors: Kaushik Sengupta, Steven Bowers, Aydin Babakhani, Arthur H. Chang, Seyed Ali Hajimiri
  • Patent number: 7812775
    Abstract: A phased array mm-wave device includes a substrate, a mm-wave transmitter integrated onto the substrate configured to transmit a mm-wave signal and/or a mm-wave receiver integrated onto the substrate and configured to receive a mm-wave signal. The mm-wave device also includes a phased array antenna system integrated onto the substrate and including two or more antenna elements. The phased array mm-wave device also includes one or more dielectric lenses. A distributed mm-wave distributed combining tree circuit includes at least two pairs of differential transconductors with regenerative degeneration and accepts at least two differential input signals. Two mm-wave loopback methods measure the phased array antenna patterns and the performance of an integrated receiver transmitter system.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: October 12, 2010
    Assignee: California Institute of Technology
    Inventors: Aydin Babakhani, Xiang Guan, Seyed Ali Hajimiri, Abbas Komijani, Arun Natarajan
  • Publication number: 20100231452
    Abstract: A phased array mm-wave device includes a substrate, a mm-wave transmitter integrated onto the substrate configured to transmit a mm-wave signal and/or a mm-wave receiver integrated onto the substrate and configured to receive a mm-wave signal. The mm-wave device also includes a phased array antenna system integrated onto the substrate and including two or more antenna elements. The phased array mm-wave device also includes one or more dielectric lenses. A distributed mm-wave distributed combining tree circuit includes at least two pairs of differential transconductors with regenerative degeneration and accepts at least two differential input signals. Two mm-wave loopback methods measure the phased array antenna patterns and the performance of an integrated receiver transmitter system.
    Type: Application
    Filed: September 22, 2006
    Publication date: September 16, 2010
    Applicant: California Institute of Technology
    Inventors: Aydin Babakhani, Xiang Guan, Seyed Ali Hajimiri, Abbas Komijani, Arun Natarajan
  • Publication number: 20090289869
    Abstract: The invention relates to an antenna structure for coupling electromagnetic energy between a chip and an off-chip element, including a first resonant structure disposed on or in a chip. The first resonant structure is configured to have a first resonant frequency. The antenna structure also includes a second resonant structure disposed on or in an off-chip element. The second resonant structure is configured to have a second resonant frequency substantially the same as the first resonant frequency. The first resonant structure and the second resonant structure are mutually disposed within a near field distance of each other to form a coupled antenna structure that is configured to couple electromagnetic energy between the chip and the off-chip element. The electromagnetic energy has a selected wavelength in a wavelength range from microwave to sub-millimeter wave. The invention also relates to a method of calculating dimensions for a highly coupled antenna structure.
    Type: Application
    Filed: May 22, 2009
    Publication date: November 26, 2009
    Applicant: California Institure of Technology
    Inventors: Aydin Babakhani, Seyed Ali Hajimiri
  • Publication number: 20070259632
    Abstract: The invention is a radio transmitter that includes an antenna having at least one driven element and at least one reflector element. The driven element is electrically coupled to a radio carrier source. At least one of the driven elements or the at least one reflector element, includes at least one switch to modulate the radio carrier. Also, a secure communication system includes a radio transmitter configured to transmit a modulated signal within an information beam width. Also, a method for modulating a radio signal includes the steps of causing the transmitted carrier signal to be modulated by the modulation signal in response to switching the at least one reflector switch. Also, a method for selecting desirable antenna reflector switch combinations includes performing a mathematical simulation to determine whether the combination of reflector switch positions results in a modulated signal that can be demodulated within an information beam width.
    Type: Application
    Filed: May 4, 2007
    Publication date: November 8, 2007
    Applicant: California Institute of Technology
    Inventors: Aydin Babakhani, David Rutledge, Seyed Hajimiri