Patents by Inventor Baiju V. Patel

Baiju V. Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10657071
    Abstract: In one embodiment, a cryptographic circuit is adapted to receive a data line including at least an encrypted portion from a memory in response to a read request having a memory address from a first agent, obtain a key identifier for a key of the first agent from the data line, obtain the key using the key identifier, decrypt the at least encrypted portion of the data line using the key and send decrypted data of the at least encrypted portion of the data line to the first agent. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: May 19, 2020
    Assignee: Intel Corporation
    Inventors: David M. Durham, Siddhartha Chhabra, Amy L. Santoni, Gilbert Neiger, Barry E. Huntley, Hormuzd M. Khosravi, Baiju V. Patel, Ravi L. Sahita, Gideon Gerzon, Ido Ouziel, Ioannis T. Schoinas, Rajesh M. Sankaran
  • Patent number: 10628612
    Abstract: According to one embodiment, a method comprises executing an untrusted host virtual machine monitor (VMM) to manage execution of at least one guest virtual machine (VM). The VMM receives an encrypted key domain key, an encrypted guest code image, and an encrypted guest control structure. The VM also issues a create command. In response, a processor creates a first key domain comprising a region of memory to be encrypted by a key domain key. The encrypted key domain key is decrypted to produce the key domain key, which is inaccessible to the VMM. The VMM issues a launch command. In response, a first guest VM is launched within the first key domain. In response to a second launch command, a second guest VM is launched within the first key domain. The second guest VM provides an agent to act on behalf of the VMM. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: April 21, 2020
    Assignee: Intel Corporation
    Inventors: David M. Durham, Gilbert Neiger, Barry E. Huntley, Ravi L. Sahita, Baiju V. Patel
  • Publication number: 20200089871
    Abstract: A processor implementing techniques for processor extensions to protect stacks during ring transitions is provided. In one embodiment, the processor includes a plurality of registers and a processor core, operatively coupled to the plurality of registers. The plurality of registers is used to store data used in privilege level transitions. Each register of the plurality of registers is associated with a privilege level. An indicator to change a first privilege level of a currently active application to a second privilege level is received. In view of the second privilege level, a shadow stack pointer (SSP) stored in a register of the plurality of registers is selected. The register is associated with the second privilege level. By using the SSP, a shadow stack for use by the processor at the second privilege level is identified.
    Type: Application
    Filed: September 27, 2019
    Publication date: March 19, 2020
    Inventors: Vedvyas Shanbhogue, Jason W. Brandt, Ravi L. Sahita, Barry E. Huntley, Baiju V. Patel, Deepak K. Gupta
  • Publication number: 20200042318
    Abstract: Methods and apparatuses relating to switching of a shadow stack pointer are described. In one embodiment, a hardware processor includes a hardware decode unit to decode an instruction, and a hardware execution unit to execute the instruction to: pop a token for a thread from a shadow stack, wherein the token includes a shadow stack pointer for the thread with at least one least significant bit (LSB) of the shadow stack pointer overwritten with a bit value of an operating mode of the hardware processor for the thread, remove the bit value in the at least one LSB from the token to generate the shadow stack pointer, and set a current shadow stack pointer to the shadow stack pointer from the token when the operating mode from the token matches a current operating mode of the hardware processor.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 6, 2020
    Inventors: Vedvyas Shanbhogue, Jason W. Brandt, Ravi L. Sahita, Barry E. Huntley, Baiju V. Patel, Deepak K. Gupta
  • Patent number: 10530568
    Abstract: Encryption interface technologies are described. A processor can include a system agent, an encryption interface, and a memory controller. The system agent can communicate data with a hardware functional block. The encryption interface can be coupled between the system agent and a memory controller. The encryption interface can receive a plaintext request from the system agent, encrypt the plaintext request to obtain an encrypted request, and communicate the encrypted request to the memory controller. The memory controller can communicate the encrypted request to a main memory of the computing device.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: January 7, 2020
    Assignee: Intel Corporation
    Inventors: Eugene M. Kishinevsky, Uday R. Savagaonkar, Alpa T. Narendra Trivedi, Siddhartha Chhabra, Baiju V. Patel, Men Long, Kirk S. Yap, David M. Durham
  • Publication number: 20200004953
    Abstract: Disclosed embodiments relate to encoded inline capabilities. In one example, a system includes a trusted execution environment (TEE) to partition an address space within a memory into a plurality of compartments each associated with code to execute a function, the TEE further to assign a message object in a heap to each compartment, receive a request from a first compartment to send a message block to a specified destination compartment, respond to the request by authenticating the request, generating a corresponding encoded capability, conveying the encoded capability to the destination compartment, and scheduling the destination compartment to respond to the request, and subsequently, respond to a check capability request from the destination compartment by checking the encoded capability and, when the check passes, providing a memory address to access the message block, and, otherwise, generating a fault, wherein each compartment is isolated from other compartments.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Inventors: Michael LEMAY, David M. DURHAM, Michael E. KOUNAVIS, Barry E. HUNTLEY, Vedvyas SHANBHOGUE, Jason W. BRANDT, Josh TRIPLETT, Gilbert NEIGER, Karanvir GREWAL, Baiju V. PATEL, Ye ZHUANG, Jr-Shian TSAI, Vadim SUKHOMLINOV, Ravi SAHITA, Mingwei ZHANG, James C. FARWELL, Amitabh DAS, Krishna BHUYAN
  • Patent number: 10515023
    Abstract: This disclosure is directed to a system for address mapping and translation protection. In one embodiment, processing circuitry may include a virtual machine manager (VMM) to control specific guest linear address (GLA) translations. Control may be implemented in a performance sensitive and secure manner, and may be capable of improving performance for critical linear address page walks over legacy operation by removing some or all of the cost of page walking extended page tables (EPTs) for critical mappings. Alone or in combination with the above, certain portions of a page table structure may be selectively made immutable by a VMM or early boot process using a sub-page policy (SPP). For example, SPP may enable non-volatile kernel and/or user space code and data virtual-to-physical memory mappings to be made immutable (e.g., non-writable) while allowing for modifications to non-protected portions of the OS paging structures and particularly the user space.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: December 24, 2019
    Assignee: Intel Corporation
    Inventors: Ravi L. Sahita, Gilbert Neiger, Vedvyas Shanbhogue, David M. Durham, Andrew V. Anderson, David A. Koufaty, Asit K. Mallick, Arumugam Thiyagarajah, Barry E. Huntley, Deepak K. Gupta, Michael Lemay, Joseph F. Cihula, Baiju V. Patel
  • Patent number: 10503664
    Abstract: This disclosure is directed to a system for address mapping and translation protection. In one embodiment, processing circuitry may include a virtual machine manager (VMM) to control specific guest linear address (GLA) translations. Control may be implemented in a performance sensitive and secure manner, and may be capable of improving performance for critical linear address page walks over legacy operation by removing some or all of the cost of page walking extended page tables (EPTs) for critical mappings. Alone or in combination with the above, certain portions of a page table structure may be selectively made immutable by a VMM or early boot process using a sub-page policy (SPP). For example, SPP may enable non-volatile kernel and/or user space code and data virtual-to-physical memory mappings to be made immutable (e.g., non-writable) while allowing for modifications to non-protected portions of the OS paging structures and particularly the user space.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: December 10, 2019
    Assignee: INTEL CORPORATION
    Inventors: David M. Durham, Ravi L. Sahita, Gilbert Neiger, Vedvyas Shanbhogue, Andrew V. Anderson, Michael Lemay, Joseph F. Cihula, Arumugam Thiyagarajah, Asit K. Mallick, Barry E. Huntley, David A. Koufaty, Deepak K. Gupta, Baiju V. Patel
  • Patent number: 10452403
    Abstract: In an embodiment, a method is provided. The method includes managing user-level threads on a first instruction sequencer in response to executing user-level instructions on a second instruction sequencer that is under control of an application level program. A first user-level thread is run on the second instruction sequencer and contains one or more user level instructions. A first user level instruction has at least 1) a field that makes reference to one or more instruction sequencers or 2) implicitly references with a pointer to code that specifically addresses one or more instruction sequencers when the code is executed.
    Type: Grant
    Filed: September 26, 2015
    Date of Patent: October 22, 2019
    Assignee: Intel Corporation
    Inventors: Hong Wang, John P. Shen, Edward T. Grochowski, Richard A. Hankins, Gautham N. Chinya, Bryant E. Bigbee, Shivnandan D. Kaushik, Xiang Chris Zou, Per Hammarlund, Scott Dion Rodgers, Xinmin Tian, Anil Aggawal, Prashant Sethi, Baiju V. Patel, James P Held
  • Patent number: 10430580
    Abstract: A processor implementing techniques for processor extensions to protect stacks during ring transitions is provided. In one embodiment, the processor includes a plurality of registers and a processor core, operatively coupled to the plurality of registers. The plurality of registers is used to store data used in privilege level transitions. Each register of the plurality of registers is associated with a privilege level. An indicator to change a first privilege level of a currently active application to a second privilege level is received. In view of the second privilege level, a shadow stack pointer (SSP) stored in a register of the plurality of registers is selected. The register is associated with the second privilege level. By using the SSP, a shadow stack for use by the processor at the second privilege level is identified.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: October 1, 2019
    Assignee: Intel Corporation
    Inventors: Vedvyas Shanbhogue, Jason W. Brandt, Ravi L. Sahita, Barry E. Huntley, Baiju V. Patel, Deepak K. Gupta
  • Patent number: 10394556
    Abstract: Methods and apparatuses relating to switching of a shadow stack pointer are described. In one embodiment, a hardware processor includes a hardware decode unit to decode an instruction, and a hardware execution unit to execute the instruction to: pop a token for a thread from a shadow stack, wherein the token includes a shadow stack pointer for the thread with at least one least significant bit (LSB) of the shadow stack pointer overwritten with a bit value of an operating mode of the hardware processor for the thread, remove the bit value in the at least one LSB from the token to generate the shadow stack pointer, and set a current shadow stack pointer to the shadow stack pointer from the token when the operating mode from the token matches a current operating mode of the hardware processor.
    Type: Grant
    Filed: December 20, 2015
    Date of Patent: August 27, 2019
    Assignee: Intel Corporation
    Inventors: Vedvyas Shanbhogue, Jason W. Brandt, Ravi L. Sahita, Barry E. Huntley, Baiju V. Patel, Deepak K. Gupta
  • Publication number: 20190220625
    Abstract: According to one embodiment, a method comprises executing an untrusted host virtual machine monitor (VMM) to manage execution of at least one guest virtual machine (VM). The VMM receives an encrypted key domain key, an encrypted guest code image, and an encrypted guest control structure. The VM also issues a create command. In response, a processor creates a first key domain comprising a region of memory to be encrypted by a key domain key. The encrypted key domain key is decrypted to produce the key domain key, which is inaccessible to the VMM. The VMM issues a launch command. In response, a first guest VM is launched within the first key domain. In response to a second launch command, a second guest VM is launched within the first key domain. The second guest VM provides an agent to act on behalf of the VMM. Other embodiments are described and claimed.
    Type: Application
    Filed: March 25, 2019
    Publication date: July 18, 2019
    Inventors: David M. Durham, Gilbert Neiger, Barry E. Huntley, Ravi L. Sahita, Baiju V. Patel
  • Publication number: 20190196983
    Abstract: Various embodiments are generally directed to the providing for mutual authentication and secure distributed processing of multi-party data. In particular, an experiment may be submitted to include the distributed processing of private data owned by multiple distrustful entities. Private data providers may authorize the experiment and securely transfer the private data for processing by trusted computing nodes in a pool of trusted computing nodes.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Applicant: INTEL CORPORATION
    Inventors: HORMUZD M. KHOSRAVI, Baiju V. Patel
  • Patent number: 10303899
    Abstract: A host Virtual Machine Monitor (VMM) operates “blindly,” without the host VMM having the ability to access data within a guest virtual machine (VM) or the ability to access directly control structures that control execution flow of the guest VM. Guest VMs execute within a protected region of memory (called a key domain) that even the host VMM cannot access. Virtualization data structures that pertain to the execution state (e.g., a Virtual Machine Control Structure (VMCS)) and memory mappings (e.g., Extended Page Tables (EPTs)) of the guest VM are also located in the protected memory region and are also encrypted with the key domain key. The host VMM and other guest VMs, which do not possess the key domain key for other key domains, cannot directly modify these control structures nor access the protected memory region. The host VMM, however, can verify correctness of the control structures of guest VMs.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: May 28, 2019
    Assignee: Intel Corporation
    Inventors: David M. Durham, Gilbert Neiger, Barry E. Huntley, Ravi L. Sahita, Baiju V. Patel
  • Patent number: 10255202
    Abstract: Various embodiments are generally directed to the providing for mutual authentication and secure distributed processing of multi-party data. In particular, an experiment may be submitted to include the distributed processing of private data owned by multiple distrustful entities. Private data providers may authorize the experiment and securely transfer the private data for processing by trusted computing nodes in a pool of trusted computing nodes.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 9, 2019
    Assignee: INTEL CORPORATION
    Inventors: Hormuzd M. Khosravi, Baiju V. Patel
  • Publication number: 20190095350
    Abstract: In one embodiment, a cryptographic circuit is adapted to receive a data line including at least an encrypted portion from a memory in response to a read request having a memory address from a first agent, obtain a key identifier for a key of the first agent from the data line, obtain the key using the key identifier, decrypt the at least encrypted portion of the data line using the key and send decrypted data of the at least encrypted portion of the data line to the first agent. Other embodiments are described and claimed.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Inventors: David M. Durham, Siddhartha Chhabra, Amy L. Santoni, Gilbert Neiger, Barry E. Huntley, Hormuzd M. Khosravi, Baiju V. Patel, Ravi L. Sahita, Gideon Gerzon, Ido Ouziel, Ioannis T. Schoinas, Rajesh M. Sankaran
  • Publication number: 20190087575
    Abstract: Implementations describe providing isolation in virtualized systems using trust domains. In one implementation, a processing device includes a memory ownership table (MOT) that is access-controlled against software access. The processing device further includes a processing core to execute a trust domain resource manager (TDRM) to manage a trust domain (TD), maintain a trust domain control structure (TDCS) for managing global metadata for each TD, maintain an execution state of the TD in at least one trust domain thread control structure (TD-TCS) that is access-controlled against software accesses, and reference the MOT to obtain at least one key identifier (key ID) corresponding to an encryption key assigned to the TD, the key ID to allow the processing device to decrypt memory pages assigned to the TD responsive to the processing device executing in the context of the TD, the memory pages assigned to the TD encrypted with the encryption key.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Ravi L. Sahita, Baiju V. Patel, Barry E. Huntley, Gilbert Neiger, Hormuzd M. Khosravi, Ido Ouziel, David M. Durham, Ioannis T. Schoinas, Siddhartha Chhabra, Carlos V. Rozas, Gideon Gerzon
  • Publication number: 20190042764
    Abstract: In a public cloud environment, each consumer's/guest's workload is encrypted in a cloud service provider's (CSP's) server memory using a consumer-provided key unknown to the CSP's workload management software. An encrypted consumer/guest workload image is loaded into the CSP's server memory at a memory location specified by the CSP's workload management software. Based upon the CSP-designated memory location, the guest workload determines expected hardware physical addresses into which memory mapping structures and other types of consumer data should be loaded. These expected hardware physical addresses are specified by the guest workload in a memory ownership table (MOT), which is used to check that subsequently CSP-designated memory mappings are as expected. Memory ownership table entries also may be encrypted by the consumer-provided key unknown to the CSP.
    Type: Application
    Filed: November 10, 2017
    Publication date: February 7, 2019
    Inventors: David M. Durham, Siddhartha Chhabra, Ravi L. Sahita, Barry E. Huntley, Gilbert Neiger, Gideon Gerzon, Baiju V. Patel
  • Publication number: 20180373895
    Abstract: A host Virtual Machine Monitor (VMM) operates “blindly,” without the host VMM having the ability to access data within a guest virtual machine (VM) or the ability to access directly control structures that control execution flow of the guest VM. Guest VMs execute within a protected region of memory (called a key domain) that even the host VMM cannot access. Virtualization data structures that pertain to the execution state (e.g., a Virtual Machine Control Structure (VMCS)) and memory mappings (e.g., Extended Page Tables (EPTs)) of the guest VM are also located in the protected memory region and are also encrypted with the key domain key. The host VMM and other guest VMs, which do not possess the key domain key for other key domains, cannot directly modify these control structures nor access the protected memory region. The host VMM, however, can verify correctness of the control structures of guest VMs.
    Type: Application
    Filed: February 28, 2017
    Publication date: December 27, 2018
    Inventors: David M. Durham, Gilbert Neiger, Barry E. Huntley, Ravi L. Sahita, Baiju V. Patel
  • Patent number: 10162640
    Abstract: A processor is described having a functional unit within an instruction execution pipeline. The functional unit having circuitry to determine whether substantive data from a larger source data size will fit within a smaller data size that the substantive data is to flow to.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: December 25, 2018
    Assignee: Intel Corporation
    Inventors: Martin G. Dixon, Baiju V. Patel, Rajeev Gopalakrishna