Patents by Inventor Bangalore Aswatha Nagaraj

Bangalore Aswatha Nagaraj has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140220378
    Abstract: Coating systems and processes by which the coating systems can be deposited to be resistant to contaminants, and particularly resistant to infiltration and damage caused by CMAS. The coating systems include inner and outer ceramic layers. The inner ceramic layer consists essentially of zirconia stabilized by about 6 to about 9 weight percent yttria and optionally contains greater than 0.5 to 10 weight percent hafnium oxide. The outer ceramic layer overlies and contacts the inner ceramic layer to define the outermost surface of the coating system. The outer ceramic layer consists essentially of zirconia stabilized by about 25 to about 75 weight percent yttria, has a thickness that is less than the thickness of the inner ceramic layer and further contains greater than 0.5 to 10 weight percent hafnium oxide and optionally 1 to 10 weight percent tantalum oxide. The outer ceramic layer has a porosity level that is lower than that of the inner ceramic layer.
    Type: Application
    Filed: July 5, 2012
    Publication date: August 7, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bangalore Aswatha Nagaraj, Douglas Gerard Konitzer, Julie Marie Chapman, Venkat Subramaniam Venkataramani
  • Patent number: 8722202
    Abstract: A method and system for enhancing the heat transfer of turbine engine components is disclosed that includes applying a metallic coating having a high thermal conductivity to the cold side of a turbine component to enhance heat transfer away from the component. The metallic coating may be roughened to improve heat transfer. The metal coating may be a Ni—Al bond coating having an aluminum content greater than about 50 weight percent.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: May 13, 2014
    Assignee: General Electric Company
    Inventors: Bangalore Aswatha Nagaraj, Marie Ann McMasters
  • Patent number: 8658255
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability involving providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
  • Patent number: 8658291
    Abstract: Calcium magnesium aluminosilicate (CMAS) mitigation compositions selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof when the CMAS mitigation composition is included as a separate CMAS mitigation layer in an environmental barrier coating for a high temperature substrate component.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
  • Publication number: 20130095344
    Abstract: Coating systems and processes by which the coating systems can be deposited to be resistant to contaminants, and particularly resistant to infiltration and damage caused by CMAS. The coating systems include inner and outer ceramic layers, each having a microstructure characterized by splats and horizontal porosity. The inner ceramic layer consists essentially of zirconia stabilized by about 6 to about 9 weight percent yttria. The outer ceramic layer overlies and contacts the inner ceramic layer to define the outermost surface of the coating system. The outer ceramic layer consists essentially of zirconia stabilized by about 25 to about 75 weight percent yttria, has a thickness that is less than the thickness of the inner ceramic layer, and has a porosity level that is lower than that of the inner ceramic layer.
    Type: Application
    Filed: December 30, 2011
    Publication date: April 18, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bangalore Aswatha Nagaraj, Thomas John Tomlinson
  • Patent number: 8062759
    Abstract: Thermal barrier coating systems for use with hot section components of a gas turbine engine include an inner layer overlying a bond coated substrate and a top layer overlying at least a portion of the inner layer. The inner layer includes a thermal barrier material such as yttria-stabilized zirconia. The top layer includes a rare earth aluminate. The thicknesses and microstructures of the layers may be varied depending on the type of component to be coated. Articles incorporating the thermal barrier coating system exhibit improved resistance to CMAS infiltration.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: November 22, 2011
    Assignee: General Electric Company
    Inventors: Ming Fu, Ramgopal Darolia, Mark Gorman, Bangalore Aswatha Nagaraj
  • Patent number: 7910173
    Abstract: A thermal barrier coating and deposition process for a component intended for use in a hostile thermal environment, such as the turbine, combustor and augmentor components of a gas turbine engine. The TBC has a first coating portion on at least a first surface portion of the component. The first coating portion is formed of a ceramic material to have at least an inner region, at least an outer region overlying the inner region, and a columnar microstructure whereby the inner and outer regions comprise columns of the ceramic material. The columns of the inner region are more closely spaced than the columns of the outer region so that the inner region of the first coating portion is denser than the outer region of the first coating portion, wherein the higher density of the inner region promotes the impact resistance of the first coating portion.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: March 22, 2011
    Assignee: General Electric Company
    Inventors: Irene Spitsberg, Brett Allen Rohrer Boutwell, Robert William Bruce, Curtis Alan Johnson, Bangalore Aswatha Nagaraj, William Scott Walston, Rudolfo Viguie, Joshua Leigh Miller, Roger Dale Wustman
  • Publication number: 20100279018
    Abstract: A coating system and a method for forming the coating system, the method including coating a surface of a gas turbine engine turbine component having a metallic surface that is outside the combustion gas stream and exposed to cooling air during operation of the engine. A gel-forming solution including a ceramic metal oxide precursor is provided. The gel-forming solution is heated to a first preselected temperature for a first preselected time to form a gel. The gel is then deposited on the metallic surface. Thereafter the gel is fired at a second preselected temperature above the first preselected temperature to form a ceramic corrosion resistant coating comprising a ceramic metal oxide is selected from the group consisting of zirconia, hafnia and combinations thereof. The ceramic corrosion resistant coating having a thickness of up to about 127 microns and remaining adherent at temperatures greater than about 1000° F.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 4, 2010
    Applicant: General Electric Corporation
    Inventors: Brian Thomas Hazel, Jeffrey Pfaendtner, Kevin Paul McEvoy, Bangalore Aswatha Nagaraj
  • Patent number: 7807231
    Abstract: A process for protecting a thermal barrier coating (TBC) on a component used in a high-temperature environment, such as the hot section of a gas turbine engine. The process applies a protective film on the surface of the TBC to resist infiltration of contaminants such as CMAS that can melt and infiltrate the TBC to cause spallation. The process generally entails applying to the TBC surface a metal composition containing at least one metal whose oxide resists infiltration of CMAS into the TBC. The metal composition is applied so as to form a metal film on the TBC surface and optionally to infiltrate porosity within the TBC beneath its surface. The metal composition is then converted to form an oxide film, with at least a portion of the oxide film forming a surface deposit on the TBC surface.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: October 5, 2010
    Assignee: General Electric Company
    Inventors: Mark Daniel Gorman, Bangalore Aswatha Nagaraj, Robert Edward Schafrik
  • Publication number: 20100162715
    Abstract: A method and system for enhancing the heat transfer of turbine engine components is disclosed that includes applying a metallic coating having a high thermal conductivity to the cold side of a turbine component to enhance heat transfer away from the component. The metallic coating may be roughened to improve heat transfer. The metal coating may be a Ni—Al bond coating having an aluminum content greater than about 50 weight percent.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bangalore Aswatha NAGARAJ, Marie Ann MCMASTERS
  • Publication number: 20100159150
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability involving providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof.
    Type: Application
    Filed: December 19, 2008
    Publication date: June 24, 2010
    Inventors: GLEN HAROLD KIRBY, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
  • Publication number: 20100158680
    Abstract: Calcium magnesium aluminosilicate (CMAS) mitigation compositions selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof when the CMAS mitigation composition is included as a separate CMAS mitigation layer in an environmental barrier coating for a high temperature substrate component.
    Type: Application
    Filed: December 19, 2008
    Publication date: June 24, 2010
    Inventors: GLEN HAROLD KIRBY, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
  • Patent number: 7666515
    Abstract: An article comprising a turbine component other than an airfoil having a metal substrate and a ceramic corrosion resistant coating overlaying the metal substrate. This coating has a thickness up to about one micrometer and consists of a ceramic composition that comprises a ceramic metal oxide selected from the group consisting of zirconia, hafnia and mixtures thereof. This coating can be formed by alternative methods to have different microstructures, including a dense matrix or a strain-tolerant columnar grain structure.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: February 23, 2010
    Assignee: General Electric Company
    Inventors: Bangalore Aswatha Nagaraj, Brian Thomas Hazel, Jeffrey Allan Pfaendtner
  • Patent number: 7597966
    Abstract: A thermal barrier coating and deposition process for a component intended for use in a hostile thermal environment, such as the turbine, combustor and augmentor components of a gas turbine engine. The TBC has a first coating portion on at least a first surface portion of the component. The first coating portion is formed of a ceramic material to have at least an inner region, at least an outer region overlying the inner region, and a columnar microstructure whereby the inner and outer regions comprise columns of the ceramic material. The columns of the inner region are more closely spaced than the columns of the outer region so that the inner region of the first coating portion is denser than the outer region of the first coating portion, wherein the higher density of the inner region promotes the impact resistance of the first coating portion.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: October 6, 2009
    Assignee: General Electric Company
    Inventors: Irene Spitsberg, Brett Allen Rohrer Boutwell, Robert William Bruce, Curtis Alan Johnson, Bangalore Aswatha Nagaraj, William Scott Walston
  • Publication number: 20090239061
    Abstract: A coating system and a method for forming the coating system, the method including coating a surface of a gas turbine engine turbine component having a metallic surface that is outside the combustion gas stream and exposed to cooling air during operation of the engine. A gel-forming solution including a ceramic metal oxide precursor is provided. The gel-forming solution is heated to a first preselected temperature for a first preselected time to form a gel. The gel is then deposited on the metallic surface. Thereafter the gel is fired at a second preselected temperature above the first preselected temperature to form a ceramic corrosion resistant coating comprising a ceramic metal oxide is selected from the group consisting of zirconia, hafnia and combinations thereof. The ceramic corrosion resistant coating having a thickness of up to about 127 microns and remaining adherent at temperatures greater than about 1000° F.
    Type: Application
    Filed: November 8, 2006
    Publication date: September 24, 2009
    Applicant: GENERAL ELECTRIC CORPORATION
    Inventors: Brian Thomas HAZEL, Jeffrey PFAENDTNER, Kevin Paul MCEVOY, Bangalore Aswatha NAGARAJ
  • Publication number: 20090191347
    Abstract: An article comprising a turbine component other than an airfoil having a metal substrate and a ceramic corrosion resistant coating overlaying the metal substrate. This coating has a thickness up to about 5 mils (127 microns) and comprises a ceramic metal oxide selected from the group consisting of zirconia, hafnia and mixtures thereof. This coating can be formed by a method comprising the following steps: (a) providing a turbine component other than an airfoil comprising the metal substrate; (b) providing a gel-forming solution comprising a ceramic metal oxide precursor; (c) heating the gel-forming solution to a first preselected temperature for a first preselected time to form a gel; (d) depositing the gel on the metal substrate; and (e) firing the gel at a second preselected temperature above the first preselected temperature to form the ceramic corrosion resistant coating comprising the ceramic metal oxide.
    Type: Application
    Filed: April 9, 2009
    Publication date: July 30, 2009
    Applicant: General Electric Company
    Inventors: Bangalore Aswatha Nagaraj, Brian Thomas Hazel, Jeffrey Allan Pfaendtner
  • Publication number: 20090191353
    Abstract: An article comprising a turbine component other than an airfoil having a metal substrate and a ceramic corrosion resistant coating overlaying the metal substrate. This coating has a thickness up to about 5 mils (127 microns) and comprises a ceramic metal oxide selected from the group consisting of zirconia, hafnia and mixtures thereof. This coating can be formed by a method comprising the following steps: (a) providing a turbine component other than an airfoil comprising the metal substrate; (b) providing a gel-forming solution comprising a ceramic metal oxide precursor; (c) heating the gel-forming solution to a first preselected temperature for a first preselected time to form a gel; (d) depositing the gel on the metal substrate; and (e) firing the gel at a second preselected temperature above the first preselected temperature to form the ceramic corrosion resistant coating comprising the ceramic metal oxide.
    Type: Application
    Filed: April 9, 2009
    Publication date: July 30, 2009
    Applicant: General Electric Company
    Inventors: BANGALORE ASWATHA NAGARAJ, BRIAN THOMAS HAZEL, JEFFREY ALLAN PFAENDTNER
  • Publication number: 20090169914
    Abstract: Thermal barrier coating systems for use with hot section components of a gas turbine engine include an inner layer overlying a bond coated substrate and a top layer overlying at least a portion of the inner layer. The inner layer includes a thermal barrier material such as yttria-stabilized zirconia. The top layer includes a rare earth aluminate. The thicknesses and microstructures of the layers may be varied depending on the type of component to be coated.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 2, 2009
    Inventors: Ming Fu, Ramgopal Darolia, Mark Gorman, Bangalore Aswatha Nagaraj
  • Publication number: 20090169752
    Abstract: Methods for providing improved resistance to CMAS infiltration for hot section components of a gas turbine engine. Exemplary methods include coating a substrate with a thermal barrier coating system by overlying a bond coated substrate with an inner thermal barrier layer comprised of a thermal barrier material such as yttria-stabilized zirconia. A top layer, including a rare-earth aluminate, is deposited so as to overlie at least a portion of the inner layer. Deposition processes and coating thicknesses may be tailored to the type of component to be coated.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 2, 2009
    Inventors: Ming Fu, Ramgopal Darolia, Mark Gorman, Bangalore Aswatha Nagaraj
  • Publication number: 20090162690
    Abstract: Coating system for a metallic substrate includes a strengthened bond coat including a bond coat inner layer and an aluminum-containing layer overlying the bond coat inner layer. The bond coat inner layer is formed by deposition of a bond coat composition including, in weight percent, 14-20% Cr, 5-8% Al, 8-12% Co, 3-7% Ta, 0.1-0.6% Hf, 0.1-0.5% Y, up to about 1% Si, 0.005-0.020% Zr, 0.04-0.08% C, 0.01-0.02% B, with a remainder including Ni and incidental impurities, wherein the bond coat composition is substantially free of rhenium. The coating system includes an optional thermal barrier coating which may be a yttria-stabilized zirconia.
    Type: Application
    Filed: December 24, 2007
    Publication date: June 25, 2009
    Inventors: Bangalore Aswatha Nagaraj, David John Wortman, Michael Patrick Maly