Patents by Inventor Bao-Ru Young

Bao-Ru Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230012743
    Abstract: Semiconductor structures and methods are provided. A method according to the present disclosure includes providing a workpiece that includes a plurality of active regions including channel regions and source/drain regions, and a plurality of dummy gate stacks intersecting the plurality of active regions at the channel regions, the plurality of dummy gate stacks including a device portion and a terminal end portion. The method further includes depositing a gate spacer layer over the workpiece, anisotropically etching the workpiece to recess the source/drain regions and to form a gate spacer from the gate spacer layer, forming a patterned photoresist layer over the workpiece to expose the device portion and the recessed source/drain regions while the terminal end portion is covered, and after the forming of the patterned photoresist layer, epitaxially forming source/drain features over the recessed source/drain regions.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 19, 2023
    Inventors: Ming-Yang Huang, Yung Feng Chang, Tung-Heng Hsieh, Bao-Ru Young
  • Publication number: 20220414309
    Abstract: A method that includes receiving an integrated circuit (IC) design layout including a layout block, where the layout block has a corner, adding first patterns along a first edge of the corner, adding second patterns along a second edge of the corner, moving a first column of the first patterns closest to the second edge horizontally toward the second edge, moving a second column of second patterns closest to the second edge horizontally toward the second edge, extending lengths of the first and second patterns in the first and second columns, and outputting a pattern layout in a computer-readable format, where the pattern layout includes the first patterns and the second patterns.
    Type: Application
    Filed: December 30, 2021
    Publication date: December 29, 2022
    Inventors: Yung Feng Chang, Pi-Yun Sun, Tung-Heng Hsieh, Yu-Jung Chang, Bao-Ru Young
  • Publication number: 20220415713
    Abstract: A method of preparing a layout for manufacturing a semiconductor device includes receiving a layout that includes a plurality of metal interconnects, identifying a first set of metal interconnects from the metal interconnects corresponding to a first patterning process and a second set of metal interconnects from the metal interconnects corresponding to a second patterning process, identifying a first set of floating metal portions in the first set of metal interconnects and a second set of floating metal portions in the second set of metal interconnects, and removing the second set of floating metal portions from the layout, while the first set of floating metal portions remains in the layout.
    Type: Application
    Filed: April 22, 2022
    Publication date: December 29, 2022
    Inventors: Han-Chung Lin, Yen Chun Lin, Chung-Yi Lin, Bao-Ru Young
  • Publication number: 20220406900
    Abstract: A method includes forming first and second semiconductor fins protruding from a substrate. Each of the first and second semiconductor fins includes a stack of alternating channel layers and non-channel layers. The method also includes forming a dielectric helmet between and protruding from the first and the second semiconductor fins, forming a dummy gate stack over the dielectric helmet, patterning the dummy gate stack to expose a portion of the dielectric helmet, removing the exposed portion of the dielectric helmet, and forming a metal gate structure, such that a remaining portion of the dielectric helmet separates the metal gate structure between the first and the second semiconductor fins. The method also includes forming a contact feature over a portion of the metal gate structure. A sidewall of the contact feature is between one of the semiconductor fins and the remaining portion of the dielectric helmet.
    Type: Application
    Filed: February 25, 2022
    Publication date: December 22, 2022
    Inventors: Shao-Jyun Wu, Yung Feng Chang, Tung-Heng Hsieh, Bao-Ru Young
  • Patent number: 11532607
    Abstract: Electrostatic discharge (ESD) structures are provided. An ESD structure includes a semiconductor substrate, a first epitaxy region with a first type of conductivity over the semiconductor substrate, a second epitaxy region with a second type of conductivity over the semiconductor substrate, and a plurality of first semiconductor layers and a plurality of second semiconductor layers. The first semiconductor layers and the second semiconductor layers are alternatingly stacked over the semiconductor substrate and between the first and second epitaxy regions. Each of the first and second semiconductor layers has a first side contacting the first epitaxy region and a second side contacting the second epitaxy region, and the first side is opposite the second side.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chia Hsu, Tung-Heng Hsieh, Yung-Feng Chang, Bao-Ru Young, Jam-Wem Lee, Chih-Hung Wang
  • Patent number: 11527527
    Abstract: Provided is a tap cell including a substrate, a first well, a second well, a first doped region, and the second doped region. The substrate has a first region and a second region. The first well has a first dopant type and includes a first portion disposed in the first region and a second portion extending into the second region. The second well has a second dopant type and includes a third portion disposed in the second region and a fourth portion extending into the first region. The first doped region having the first dopant type is disposed in the second portion of the first well and the third portion of the second well along the second region. The second doped region having the second dopant type is disposed in the first portion of the first well and the fourth portion of the second well along the first region.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: December 13, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Feng Chang, Bao-Ru Young, Tung-Heng Hsieh, Chun-Chia Hsu
  • Publication number: 20220384416
    Abstract: An array of poly lines on an active device area of an integrated chip is extended to form a dummy device structure on an adjacent isolation region. The resulting dummy device structure is an array of poly lines having the same line width, line spacing, and pitch as the array of poly lines on the active device area. The poly lines of the dummy device structure are on grid with the poly lines on the active device area. Because the dummy device structure is formed of poly lines that are on grid with the poly lines on the active device area, the dummy device structure may be much closer to the active device area than would otherwise be possible. The resulting proximity of the dummy device structure to the active device area improves anti-dishing performance and reduces empty space on the integrated chip.
    Type: Application
    Filed: August 5, 2022
    Publication date: December 1, 2022
    Inventors: Yung Feng Chang, Bao-Ru Young, Yu-Jung Chang, Tzung-Chi Lee, Tung-Heng Hsieh, Chun-Chia Hsu
  • Publication number: 20220384279
    Abstract: Test line structures are provided. A test line structure includes a semiconductor substrate, a plurality of diagnosis units and a plurality of first micro pad units. The diagnosis units are formed over the semiconductor substrate. Each of the diagnosis units includes a first interconnect structure having a first routing pattern. The first interconnect structures of the diagnosis units are connected in series to form a first test chain through the first micro pad units, and each of the first micro pad units is configured to connect the first interconnect structures of two adjacent diagnosis units in the first test chain. The first routing patterns of the first interconnect structures in the diagnosis units are different.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Inventors: Yen-Chun LIN, Chung-Yi LIN, Yen-Sen WANG, Bao-Ru YOUNG
  • Patent number: 11508631
    Abstract: A semiconductor device may include function circuits and a test line structure beside the function circuits. The test line structure includes standard cell circuit blocks including a first components and environment circuit regions between the standard cell circuit blocks. The environment circuit regions include second components. The first components are different from the second components in structure, arrangement or a combination thereof.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: November 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Chun Lin, Bao-Ru Young, Ting-Yun Wu, Yen-Sen Wang, Hsiao-Wen Hsu
  • Patent number: 11507725
    Abstract: Various examples of integrated circuit layouts with line-end extensions are disclosed herein. In an example, a method includes receiving an integrated circuit layout that contains: a first and second set of shapes extending in parallel in a first direction, wherein a pitch of the first set of shapes is different from a pitch of the second set of shapes. A cross-member shape is inserted into the integrated circuit layout that extends in a second direction perpendicular to the first direction, and a set of line-end extensions is inserted into the integrated circuit layout that extend from each shape of the first set of shapes and the second set of shapes to the cross-member shape. The integrated circuit layout containing the first set of shapes, the second set of shapes, the cross-member shape, and the set of line-end extensions is provided for fabricating an integrated circuit.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsien-Huang Liao, Tung-Heng Hsieh, Bao-Ru Young, Yung Feng Chang
  • Patent number: 11508624
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jhe-Ching Lu, Bao-Ru Young, Yen-Sen Wang, Tsung-Chieh Tsai
  • Publication number: 20220367441
    Abstract: A semiconductor structure includes a substrate having a first well of a first conductivity type and a second well of a second conductivity type. From a top view, the first well includes first and seconds edges extending along a first direction. The second edge has multiple turns, resulting in the first well having a protruding section and a recessed section. The semiconductor structure further includes a first source/drain feature over the protruding section and a second source/drain feature over a main body of the first well. The first source/drain feature is of the first conductivity type. The second source/drain feature is of the second conductivity type. The first and the second source/drain features are generally aligned along a second direction perpendicular to the first direction from the top view.
    Type: Application
    Filed: July 29, 2022
    Publication date: November 17, 2022
    Inventors: Yung Feng Chang, Chun-Chia Hsu, Tung-Heng Hsieh, Bao-Ru Young
  • Publication number: 20220352341
    Abstract: The present disclosure describes an exemplary replacement gate process that forms spacer layers in a gate stack to mitigate time dependent dielectric breakdown (TDDB) failures. For example, the method can include a partially fabricated gate structure with a first recess. A spacer layer is deposited into the first recess and etched with an anisotropic etchback (EB) process to form a second recess that has a smaller aperture than the first recess. A metal fill layer is deposited into the second recess.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 3, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Jyun HUANG, Bao-Ru Young, Tung-Heng Hsieh
  • Publication number: 20220344215
    Abstract: In an embodiment, a method includes: forming a first fin extending from a substrate; forming a second fin extending from the substrate, the second fin being spaced apart from the first fin by a first distance; forming a metal gate stack over the first fin and the second fin; depositing a first inter-layer dielectric over the metal gate stack; and forming a gate contact extending through the first inter-layer dielectric to physically contact the metal gate stack, the gate contact being laterally disposed between the first fin and the second fin, the gate contact being spaced apart from the first fin by a second distance, where the second distance is less than a second predetermined threshold when the first distance is greater than or equal to a first predetermined threshold.
    Type: Application
    Filed: July 12, 2022
    Publication date: October 27, 2022
    Inventors: Shih-Chieh Wu, Pang-Chi Wu, Kuo-Yi Chao, Mei-Yun Wang, Hsien-Huang Liao, Tung-Heng Hsieh, Bao-Ru Young
  • Patent number: 11482518
    Abstract: A semiconductor structure includes a substrate having first and second wells of first and second conductivity types respectively. From a top view, the first and second wells extend lengthwise along a first direction, the first and second wells each includes a protruding section that protrudes along a second direction perpendicular to the first direction and a recessed section that recedes along the second direction. The protruding section of the first well fits into the recessed section of the second well, and vice versa. The semiconductor structure further includes first source/drain features over the protruding section of the first well; second source/drain features over the second well; third source/drain features over the protruding section of the second well; and fourth source/drain features over the first well. The first and second source/drain features are of the first conductivity type. The third and fourth source/drain features are of the second conductivity type.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: October 25, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yung Feng Chang, Chun-Chia Hsu, Tung-Heng Hsieh, Bao-Ru Young
  • Publication number: 20220320314
    Abstract: A method of making a semiconductor device includes depositing a TiN layer over a substrate. The method further includes doping a first portion of the TiN layer using an oxygen-containing plasma treatment. The method further includes doping a second portion of the TiN layer using a nitrogen-containing plasma treatment, wherein the second portion of the TiN layer directly contacts the first portion of the TiN layer. The method further includes forming a first metal gate electrode over the first portion of the TiN layer. The method further includes forming a second metal gate electrode over the second portion of the TiN layer, wherein the first metal gate electrode has a different work function from the second metal gate electrode, and the second metal gate electrode directly contacts the first metal gate electrode.
    Type: Application
    Filed: June 16, 2022
    Publication date: October 6, 2022
    Inventors: Ming ZHU, Hui-Wen LIN, Harry Hak-Lay CHUANG, Bao-Ru YOUNG, Yuan-Sheng HUANG, Ryan Chia-Jen CHEN, Chao-Cheng CHEN, Kuo-Cheng CHING, Ting-Hua HSIEH, Carlos H. DIAZ
  • Publication number: 20220310583
    Abstract: A semiconductor structure includes a substrate having first and second wells of first and second conductivity types respectively. From a top view, the first and second wells extend lengthwise along a first direction, the first and second wells each includes a protruding section that protrudes along a second direction perpendicular to the first direction and a recessed section that recedes along the second direction. The protruding section of the first well fits into the recessed section of the second well, and vice versa. The semiconductor structure further includes first source/drain features over the protruding section of the first well; second source/drain features over the second well; third source/drain features over the protruding section of the second well; and fourth source/drain features over the first well. The first and second source/drain features are of the first conductivity type. The third and fourth source/drain features are of the second conductivity type.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Inventors: Yung Feng Chang, Chun-Chia Hsu, Tung-Heng Hsieh, Bao-Ru Young
  • Patent number: 11398559
    Abstract: The present disclosure describes an exemplary replacement gate process that forms spacer layers in a gate stack to mitigate time dependent dielectric breakdown (TDDB) failures. For example, the method can include a partially fabricated gate structure with a first recess. A spacer layer is deposited into the first recess and etched with an anisotropic etchback (EB) process to form a second recess that has a smaller aperture than the first recess. A metal fill layer is deposited into the second recess.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: July 26, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Jyun Huang, Bao-Ru Young, Tung-Heng Hsieh
  • Patent number: 11393726
    Abstract: A semiconductor device includes a substrate with an isolation region surrounding a P-active region and an N-active region, a first gate electrode comprising a first metal composition over the N-active region, and a second gate electrode with a center portion over the P-active region and an endcap portion over the isolation region. The endcap portion includes a first metal composition, and the center portion includes a second metal composition different from the first metal composition, and the center portion and the endcap portion do not overlap. An inner sidewall of the endcap portion is substantially aligned with a sidewall of the isolation region.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: July 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming Zhu, Bao-Ru Young, Harry Hak-Lay Chuang
  • Patent number: 11393724
    Abstract: In an embodiment, a method includes: forming a first fin extending from a substrate; forming a second fin extending from the substrate, the second fin being spaced apart from the first fin by a first distance; forming a metal gate stack over the first fin and the second fin; depositing a first inter-layer dielectric over the metal gate stack; and forming a gate contact extending through the first inter-layer dielectric to physically contact the metal gate stack, the gate contact being laterally disposed between the first fin and the second fin, the gate contact being spaced apart from the first fin by a second distance, where the second distance is less than a second predetermined threshold when the first distance is greater than or equal to a first predetermined threshold.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: July 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chieh Wu, Pang-Chi Wu, Kuo-Yi Chao, Mei-Yun Wang, Hsien-Huang Liao, Tung-Heng Hsieh, Bao-Ru Young