Patents by Inventor Barbara Foley Barenburg

Barbara Foley Barenburg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020179930
    Abstract: A composite semiconductor structure includes islands of noncompound semiconductor materials formed on a noncompound substrate, and an optical testing structure. In one embodiment, a scan chain runs through the noncompound substrate (and possibly also through the islands) and terminates in the islands at optical interface elements, one of which is an optical emitter and the other of which is an optical detector. A test device inputs test signals to, and reads test signals from, the scan chain by interfacing optically with the optical interface elements. In another embodiment, an optical detector is formed in the silicon substrate and an optical emitter is formed in the compound semiconductor material. A leaky waveguide communicating with the emitter overlies the detector, and detection by the detector of light emitted by the emitter is an indication of the absence of an intended circuit element between the detector and the leaky side of the waveguide.
    Type: Application
    Filed: June 1, 2001
    Publication date: December 5, 2002
    Applicant: MOTOROLA, INC.
    Inventors: James S. Irwin, Clinton C. Powell, Timothy J. Johnson, Kevin B. Traylor, Duane C. Rabe, Barbara Foley Barenburg
  • Publication number: 20020181825
    Abstract: An integrated circuit that distributes its clock signals optically is provided. The integrated circuit may preferably include a plurality of digital CMOS circuits that communicate optically. The optical devices are preferably formed from compound semiconductor structures.
    Type: Application
    Filed: June 1, 2001
    Publication date: December 5, 2002
    Applicant: MOTOROLA, INC.
    Inventors: Timothy Joe Johnson, Kevin B. Traylor, Duane C. Rabe, Barbara Foley Barenburg
  • Publication number: 20020181828
    Abstract: High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. A substrate so formed can be used to implement an optically switched device, such as a mixer, that utilizes optical source and optical detector components.
    Type: Application
    Filed: June 1, 2001
    Publication date: December 5, 2002
    Applicant: MOTOROLA, INC.
    Inventors: James S. Irwin, Timothy J. Johnson, Barbara Foley Barenburg
  • Publication number: 20020144725
    Abstract: Solar cell structures (100) including high quality epitaxial layers of monocrystalline semiconductor materials that are grown overlying monocrystalline substrates (102) such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers are disclosed. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (104) on a silicon wafer. The accommodating buffer (104) layer is a layer of monocrystalline material spaced apart from the silicon wafer by an amorphous interface layer (112) of silicon oxide. The amorphous interface layer (112) dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The solar cell structures also include a dye (110) to increase an efficiency of the solar cell.
    Type: Application
    Filed: April 10, 2001
    Publication date: October 10, 2002
    Applicant: Motorola, Inc.
    Inventors: Dirk C. Jordan, Barbara Foley Barenburg, Ravindranath Droopad
  • Publication number: 20020115201
    Abstract: A microwave device has a monolithic microwave integrated circuit (MMIC) disposed therein for applying microwave radiation to a microfluidic structure, such as a chamber, defined in the device. The microwave radiation from the MMIC is useful for heating samples introduced into the microfluidic structure and for effecting lysis of cells in the samples. Microfabrication techniques allow the fabrication of MMICs that perform heating and cell lysing of samples having volumes in the microliter to picoliter range.
    Type: Application
    Filed: March 22, 2001
    Publication date: August 22, 2002
    Inventors: Barbara Foley Barenburg, Jeremy Burdon, Yuk-Tong Chan, Xunhu Dai, Sean Gallagher, Piotr Grodzinski, Robert Marrero, Vijay Nair, David Rhine, Thomas Smekal