Patents by Inventor Barin Geoffry Haskell

Barin Geoffry Haskell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120093230
    Abstract: A method and apparatus for variable accuracy inter-picture timing specification for digital video encoding is disclosed. Specifically, the present invention discloses a system that allows the relative timing of nearby video pictures to be encoded in a very efficient manner. In one embodiment, the display time difference between a current video picture and a nearby video picture is determined. The display time difference is then encoded into a digital representation of the video picture. In a preferred embodiment, the nearby video picture is the most recently transmitted stored picture. For coding efficiency, the display time difference may be encoded using a variable length coding system or arithmetic coding. In an alternate embodiment, the display time difference is encoded as a power of two to reduce the number of bits transmitted.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 19, 2012
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20120093224
    Abstract: A method and apparatus for variable accuracy inter-picture timing specification for digital video encoding is disclosed. Specifically, the present invention discloses a system that allows the relative timing of nearby video pictures to be encoded in a very efficient manner. In one embodiment, the display time difference between a current video picture and a nearby video picture is determined. The display time difference is then encoded into a digital representation of the video picture. In a preferred embodiment, the nearby video picture is the most recently transmitted stored picture. For coding efficiency, the display time difference may be encoded using a variable length coding system or arithmetic coding. In an alternate embodiment, the display time difference is encoded as a power of two to reduce the number of bits transmitted.
    Type: Application
    Filed: December 29, 2011
    Publication date: April 19, 2012
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20120093228
    Abstract: A method and apparatus for variable accuracy inter-picture timing specification for digital video encoding is disclosed. Specifically, the present invention discloses a system that allows the relative timing of nearby video pictures to be encoded in a very efficient manner. In one embodiment, the display time difference between a current video picture and a nearby video picture is determined. The display time difference is then encoded into a digital representation of the video picture. In a preferred embodiment, the nearby video picture is the most recently transmitted stored picture. For coding efficiency, the display time difference may be encoded using a variable length coding system or arithmetic coding. In an alternate embodiment, the display time difference is encoded as a power of two to reduce the number of bits transmitted.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 19, 2012
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20120093232
    Abstract: A method and apparatus for variable accuracy inter-picture timing specification for digital video encoding is disclosed. Specifically, the present invention discloses a system that allows the relative timing of nearby video pictures to be encoded in a very efficient manner. In one embodiment, the display time difference between a current video picture and a nearby video picture is determined. The display time difference is then encoded into a digital representation of the video picture. In a preferred embodiment, the nearby video picture is the most recently transmitted stored picture. For coding efficiency, the display time difference may be encoded using a variable length coding system or arithmetic coding. In an alternate embodiment, the display time difference is encoded as a power of two to reduce the number of bits transmitted.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 19, 2012
    Inventors: Barin Geoffry Haskell, David William Singer, Andriana Dumitras, Atul Puri
  • Publication number: 20120093229
    Abstract: A method and apparatus for variable accuracy inter-picture timing specification for digital video encoding is disclosed. Specifically, the present invention discloses a system that allows the relative timing of nearby video pictures to be encoded in a very efficient manner. In one embodiment, the display time difference between a current video picture and a nearby video picture is determined. The display time difference is then encoded into a digital representation of the video picture. In a preferred embodiment, the nearby video picture is the most recently transmitted stored picture. For coding efficiency, the display time difference may be encoded using a variable length coding system or arithmetic coding. In an alternate embodiment, the display time difference is encoded as a power of two to reduce the number of bits transmitted.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 19, 2012
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20120093223
    Abstract: A method and apparatus for variable accuracy inter-picture timing specification for digital video encoding is disclosed. Specifically, the present invention discloses a system that allows the relative timing of nearby video pictures to be encoded in a very efficient manner. In one embodiment, the display time difference between a current video picture and a nearby video picture is determined. The display time difference is then encoded into a digital representation of the video picture. In a preferred embodiment, the nearby video picture is the most recently transmitted stored picture. For coding efficiency, the display time difference may be encoded using a variable length coding system or arithmetic coding. In an alternate embodiment, the display time difference is encoded as a power of two to reduce the number of bits transmitted.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 19, 2012
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20120093233
    Abstract: A method and apparatus for variable accuracy inter-picture timing specification for digital video encoding is disclosed. Specifically, the present invention discloses a system that allows the relative timing of nearby video pictures to be encoded in a very efficient manner. In one embodiment, the display time difference between a current video picture and a nearby video picture is determined. The display time difference is then encoded into a digital representation of the video picture. In a preferred embodiment, the nearby video picture is the most recently transmitted stored picture. For coding efficiency, the display time difference may be encoded using a variable length coding system or arithmetic coding. In an alternate embodiment, the display time difference is encoded as a power of two to reduce the number of bits transmitted.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 19, 2012
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20120087411
    Abstract: A dither processing system processes pixel data having an integer component and a fractional component. The system may parse picture data into a plurality of blocks having a size corresponding to a dither matrix. Fractional components of each pixel may be compared to a corresponding dither value from the dither matrix. Based on the comparison, the processing system may determine whether or not to increment the integer components of the respective pixels. By performing such comparisons on a pixel-by-pixel basis, it is expected that this dithering will be more effective than this other dither processing.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 12, 2012
    Applicant: APPLE INC.
    Inventor: Barin Geoffry Haskell
  • Publication number: 20120082236
    Abstract: An encoder executes an iterative search method for selecting deblocking parameters for coded video. According to the method, a decoded picture may be deblocked according to parameters associated with a multi-dimensional deblocking vector and an error, called the “deblocking error” may be estimated therefrom. If the estimated error exceeds a predetermined threshold, then alternate deblocking vectors may be created, each advanced from the current deblocking vector in a respective dimension. The method may deblock the decoded picture according to each advanced vector and may estimate errors from each of the deblocking of each advanced vector. Finally, the deblocking vector may be revised for a next iteration according to a gradient derived from the estimated deblocking errors of the vector dimensions. This gradient-based search method may converge on a final set of deblocking parameters in an efficient manner.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 5, 2012
    Applicant: APPLE INC.
    Inventor: Barin Geoffry Haskell
  • Publication number: 20120082217
    Abstract: The present disclosure describes use of dynamically assignable interpolation filters as part of motion compensated prediction. An encoder and a decoder each may store common codebooks that define a variety of interpolation filters that may be applied to predicted video data. During runtime coding, an encoder calculates characteristics of an ideal interpolation filter to be applied to a reference block that would minimize prediction error when the reference block would be used to predict an input block of video data. Once the characteristics of the ideal filter are identified, the encoder may search its local codebook to find a filter that best matches the ideal filter. The encoder may filter the reference block by the best matching filter stored in the codebook as it codes the input block. The encoder also may transmit an identifier of the best matching filter to a decoder, which will use the interpolation filter on predicted block as it decodes coded data for the block.
    Type: Application
    Filed: October 1, 2010
    Publication date: April 5, 2012
    Applicant: APPLE INC.
    Inventor: Barin Geoffry Haskell
  • Publication number: 20120069900
    Abstract: A quantizer and dequantizer for use in a video coding system that applies non linear, piece-wise linear scaling functions to video information signals based on a value of a variable quantization parameter. The quantizer and dequantizer apply different non linear, piece-wise linear scaling functions to a DC luminance signal, a DC chrominance signal and an AC chrominance signal. A code for reporting updates of the value of the quantization parameter is interpreted to require larger changes when the quantization parameter initially is large and smaller changes when the quantization parameter initially is small.
    Type: Application
    Filed: November 30, 2011
    Publication date: March 22, 2012
    Applicant: AT&T Intellectual Property II, L.P.
    Inventors: Barin Geoffry Haskell, Atul Puri, Robert Lewis Schmidt
  • Patent number: 8130834
    Abstract: An effective method for dynamically selecting the number of I, P and B frames during video coding is proposed. Short-term look-ahead analysis of a video sequence yields a variable number of B frames to be coded between any two stored pictures. The first picture of a group of frames (GOF) may be coded as a B picture. Motion speed is calculated for each picture of the GOF with respect to the first picture of the GOF. Subject to exceptions, as long as the subsequent pictures exhibit motion speeds that are similar and motion vector displacements that are co-linear with those of the first picture in the GOF, they may be coded as B pictures. When a picture is encountered having a motion speed that is not the same as that of the first picture in the GOF, the picture may be coded as a P picture. In some embodiments, a sequence of B pictures that terminates in a P picture may be called a “group of frames” (GOF).
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: March 6, 2012
    Assignee: Apple Inc.
    Inventors: Adriana Dumitras, Barin Geoffry Haskell
  • Publication number: 20120008687
    Abstract: The present disclosure is directed to use of dynamically assignable deblocking filters as part of video coding/decoding operations. An encoder and a decoder each may store common codebooks that define a variety of deblocking filters that may be applied to recovered video data. During run time coding, an encoder calculates characteristics of an ideal deblocking filter to be applied to a mcblock being coded, one that would minimize coding errors when the mcblock would be recovered at decode. Once the characteristics of the ideal filter are identified, the encoder may search its local codebook to find stored parameter data that best matches parameters of the ideal filter. The encoder may code the reference block and transmit both the coded block and an identifier of the best matching filter to the decoder. The decoder may apply the deblocking filter to mcblock data when the coded block is decoded.
    Type: Application
    Filed: September 2, 2010
    Publication date: January 12, 2012
    Applicant: APPLE INC.
    Inventor: Barin Geoffry Haskell
  • Publication number: 20120008686
    Abstract: The present disclosure describes use of dynamically assignable interpolation filters as part of motion compensated prediction. An encoder and a decoder each may store common codebooks that define a variety of interpolation filters that may be applied to predicted video data. During runtime coding, an encoder calculates characteristics of an ideal interpolation filter to be applied to a reference block that would minimize prediction error when the reference block would be used to predict an input block of video data. Once the characteristics of the ideal filter are identified, the encoder may search its local codebook to find a filter that best matches the idea filter. The encoder may filter the reference block by the best matching filter stored in the codebook as it codes the input block. The encoder also may transmit an identifier of the best matching filter to a decoder, which will use the interpolation filter on predicted block as it decodes coded data for the block.
    Type: Application
    Filed: September 2, 2010
    Publication date: January 12, 2012
    Applicant: APPLE INC.
    Inventor: Barin Geoffry Haskell
  • Patent number: 8094724
    Abstract: A method and apparatus for variable accuracy inter-picture timing specification for digital video encoding is disclosed. Specifically, the present invention discloses a system that allows the relative timing of nearby video pictures to be encoded in a very efficient manner. In one embodiment, the display time difference between a current video picture and a nearby video picture is determined. The display time difference is then encoded into a digital representation of the video picture. In a preferred embodiment, the nearby video picture is the most recently transmitted stored picture. For coding efficiency, the display time difference may be encoded using a variable length coding system or arithmetic coding. In an alternate embodiment, the display time difference is encoded as a power of two to reduce the number of bits transmitted.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: January 10, 2012
    Assignee: Apple Inc.
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Patent number: 8094729
    Abstract: A method and apparatus for performing motion estimation in a digital video system is disclosed. Specifically, the present invention discloses a system that quickly calculates estimated motion vectors in a very efficient manner. In one embodiment, a first multiplicand is determined by multiplying a first display time difference between a first video picture and a second video picture by a power of two scale value. This step scales up a numerator for a ratio. Next, the system determines a scaled ratio by dividing that scaled numerator by a second first display time difference between said second video picture and a third video picture. The scaled ratio is then stored calculating motion vector estimations. By storing the scaled ratio, all the estimated motion vectors can be calculated quickly with good precision since the scaled ratio saves significant bits and reducing the scale is performed by simple shifts.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: January 10, 2012
    Assignee: Apple Inc.
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Patent number: 8090026
    Abstract: A method and apparatus for variable accuracy inter-picture timing specification for digital video encoding is disclosed. Specifically, the present invention discloses a system that allows the relative timing of nearby video pictures to be encoded in a very efficient manner. In one embodiment, the display time difference between a current video picture and a nearby video picture is determined. The display time difference is then encoded into a digital representation of the video picture. In a preferred embodiment, the nearby video picture is the most recently transmitted stored picture. For coding efficiency, the display time difference may be encoded using a variable length coding system or arithmetic coding. In an alternate embodiment, the display time difference is encoded as a power of two to reduce the number of bits transmitted.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: January 3, 2012
    Assignee: Apple Inc.
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Patent number: 8090023
    Abstract: A method and apparatus for performing motion estimation in a digital video system is disclosed. Specifically, the present invention discloses a system that quickly calculates estimated motion vectors in a very efficient manner. In one embodiment, a first multiplicand is determined by multiplying a first display time difference between a first video picture and a second video picture by a power of two scale value. This step scales up a numerator for a ratio. Next, the system determines a scaled ratio by dividing that scaled numerator by a second first display time difference between said second video picture and a third video picture. The scaled ratio is then stored calculating motion vector estimations. By storing the scaled ratio, all the estimated motion vectors can be calculated quickly with good precision since the scaled ratio saves significant bits and reducing the scale is performed by simple shifts.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: January 3, 2012
    Assignee: Apple Inc.
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Patent number: 8085854
    Abstract: A quantizer and dequantizer for use in a video coding system that applies non linear, piece-wise linear scaling functions to video information signals based on a value of a variable quantization parameter. The quantizer and dequantizer apply different non linear, piece-wise linear scaling functions to a DC luminance signal, a DC chrominance signal and an AC chrominance signal. A code for reporting updates of the value of the quantization parameter is interpreted to require larger changes when the quantization parameter initially is large and smaller changes when the quantization parameter initially is small.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: December 27, 2011
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Barin Geoffry Haskell, Atul Puri, Robert Lewis Schmidt
  • Patent number: 8077779
    Abstract: A method and apparatus for performing motion estimation in a digital video system is disclosed. Specifically, the present invention discloses a system that quickly calculates estimated motion vectors in a very efficient manner. In one embodiment, a first multiplicand is determined by multiplying a first display time difference between a first video picture and a second video picture by a power of two scale value. This step scales up a numerator for a ratio. Next, the system determines a scaled ratio by dividing that scaled numerator by a second first display time difference between said second video picture and a third video picture. The scaled ratio is then stored calculating motion vector estimations. By storing the scaled ratio, all the estimated motion vectors can be calculated quickly with good precision since the scaled ratio saves significant bits and reducing the scale is performed by simple shifts.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: December 13, 2011
    Assignee: Apple Inc.
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri