Patents by Inventor Barin Geoffry Haskell

Barin Geoffry Haskell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110243239
    Abstract: A method and apparatus for performing motion estimation in a digital video system is disclosed. Specifically, the present invention discloses a system that quickly calculates estimated motion vectors in a very efficient manner. In one embodiment, a first multiplicand is determined by multiplying a first display time difference between a first video picture and a second video picture by a power of two scale value. This step scales up a numerator for a ratio. Next, the system determines a scaled ratio by dividing that scaled numerator by a second first display time difference between said second video picture and a third video picture. The scaled ratio is then stored calculating motion vector estimations. By storing the scaled ratio, all the estimated motion vectors can be calculated quickly with good precision since the scaled ratio saves significant bits and reducing the scale is performed by simple shifts.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20110243238
    Abstract: A method and apparatus for performing motion estimation in a digital video system is disclosed. Specifically, the present invention discloses a system that quickly calculates estimated motion vectors in a very efficient manner. In one embodiment, a first multiplicand is determined by multiplying a first display time difference between a first video picture and a second video picture by a power of two scale value. This step scales up a numerator for a ratio. Next, the system determines a scaled ratio by dividing that scaled numerator by a second first display time difference between said second video picture and a third video picture. The scaled ratio is then stored calculating motion vector estimations. By storing the scaled ratio, all the estimated motion vectors can be calculated quickly with good precision since the scaled ratio saves significant bits and reducing the scale is performed by simple shifts.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20110243241
    Abstract: A method and apparatus for performing motion estimation in a digital video system is disclosed. Specifically, the present invention discloses a system that quickly calculates estimated motion vectors in a very efficient manner. In one embodiment, a first multiplicand is determined by multiplying a first display time difference between a first video picture and a second video picture by a power of two scale value. This step scales up a numerator for a ratio. Next, the system determines a scaled ratio by dividing that scaled numerator by a second first display time difference between said second video picture and a third video picture. The scaled ratio is then stored calculating motion vector estimations. By storing the scaled ratio, all the estimated motion vectors can be calculated quickly with good precision since the scaled ratio saves significant bits and reducing the scale is performed by simple shifts.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20110243240
    Abstract: A method and apparatus for performing motion estimation in a digital video system is disclosed. Specifically, the present invention discloses a system that quickly calculates estimated motion vectors in a very efficient manner. In one embodiment, a first multiplicand is determined by multiplying a first display time difference between a first video picture and a second video picture by a power of two scale value. This step scales up a numerator for a ratio. Next, the system determines a scaled ratio by dividing that scaled numerator by a second first display time difference between said second video picture and a third video picture. The scaled ratio is then stored calculating motion vector estimations. By storing the scaled ratio, all the estimated motion vectors can be calculated quickly with good precision since the scaled ratio saves significant bits and reducing the scale is performed by simple shifts.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20110243235
    Abstract: A method and apparatus for performing motion estimation in a digital video system is disclosed. Specifically, the present invention discloses a system that quickly calculates estimated motion vectors in a very efficient manner. In one embodiment, a first multiplicand is determined by multiplying a first display time difference between a first video picture and a second video picture by a power of two scale value. This step scales up a numerator for a ratio. Next, the system determines a scaled ratio by dividing that scaled numerator by a second first display time difference between said second video picture and a third video picture. The scaled ratio is then stored calculating motion vector estimations. By storing the scaled ratio, all the estimated motion vectors can be calculated quickly with good precision since the scaled ratio saves significant bits and reducing the scale is performed by simple shifts.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20110243237
    Abstract: A method and apparatus for performing motion estimation in a digital video system is disclosed. Specifically, the present invention discloses a system that quickly calculates estimated motion vectors in a very efficient manner. In one embodiment, a first multiplicand is determined by multiplying a first display time difference between a first video picture and a second video picture by a power of two scale value. This step scales up a numerator for a ratio. Next, the system determines a scaled ratio by dividing that scaled numerator by a second first display time difference between said second video picture and a third video picture. The scaled ratio is then stored calculating motion vector estimations. By storing the scaled ratio, all the estimated motion vectors can be calculated quickly with good precision since the scaled ratio saves significant bits and reducing the scale is performed by simple shifts.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Patent number: 8009737
    Abstract: A method and apparatus for performing motion estimation in a digital video system is disclosed. Specifically, the present invention discloses a system that quickly calculates estimated motion vectors in a very efficient manner. In one embodiment, a first multiplicand is determined by multiplying a first display time difference between a first video picture and a second video picture by a power of two scale value. This step scales up a numerator for a ratio. Next, the system determines a scaled ratio by dividing that scaled numerator by a second first display time difference between said second video picture and a third video picture. The scaled ratio is then stored calculating motion vector estimations. By storing the scaled ratio, all the estimated motion vectors can be calculated quickly with good precision since the scaled ratio saves significant bits and reducing the scale is preformed by simple shifts.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: August 30, 2011
    Assignee: Apple Inc.
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Patent number: 8009736
    Abstract: A method and apparatus for performing motion estimation in a digital video system is disclosed. Specifically, the present invention discloses a system that quickly calculates estimated motion vectors in a very efficient manner. In one embodiment, a first multiplicand is determined by multiplying a first display time difference between a first video picture and a second video picture by a power of two scale value. This step scales up a numerator for a ratio. Next, the system determines a scaled ratio by dividing that scaled numerator by a second first display time difference between said second video picture and a third video picture. The scaled ratio is then stored calculating motion vector estimations. By storing the scaled ratio, all the estimated motion vectors can be calculated quickly with good precision since the scaled ratio saves significant bits and reducing the scale is performed by simple shifts.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: August 30, 2011
    Assignee: Apple Inc.
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20110206120
    Abstract: The invention provides devices and methods that process images. The invention processes a received signal representing information of texture and information of an image, which has the texture removed from at least one region. The image information is encoded to obtain encoded information of the image. An output signal is generated representing the texture information and the encoded image information. In another embodiment, the invention synthesizes texture based on the received texture information, decodes received image information, which is encoded, to obtain a decoded image, and then maps the synthesized texture onto the decoded image.
    Type: Application
    Filed: May 6, 2011
    Publication date: August 25, 2011
    Applicant: AT&T Intellectual Property II, L.P.
    Inventors: Adriana Dumitras, Barin Geoffry Haskell
  • Publication number: 20110194611
    Abstract: An effective method for dynamically selecting the number of I, P and B frames during video coding is proposed. Short-term look-ahead analysis of a video sequence yields a variable number of B frames to be coded between any two stored pictures. The first picture of a group of frames (GOF) may be coded as a B picture. Motion speed is calculated for each picture of the GOF with respect to the first picture of the GOF. Subject to exceptions, as long as the subsequent pictures exhibit motion speeds that are similar and motion vector displacements that are co-linear with those of the first picture in the GOF, they may be coded as B pictures. When a picture is encountered having a motion speed that is not the same as that of the first picture in the GOF, the picture may be coded as a P picture. In some embodiments, a sequence of B pictures that terminates in a P picture may be called a “group of frames” (GOF).
    Type: Application
    Filed: February 11, 2011
    Publication date: August 11, 2011
    Applicant: APPLE INC.
    Inventors: Adriana Dumitras, Barin Geoffry Haskell
  • Patent number: 7995072
    Abstract: Systems and methods for reducing bit rates by replacing original texture in a video sequence with synthesized texture. Reducing the bit rate of the video sequence begins by identifying and removing selected texture from frames in a video sequence. The removed texture is analyzed to generate texture parameters. New texture is synthesized using the texture parameters in combination with a set of constraints. Then, the newly synthesized texture is mapped back into the frames of the video sequence from which the original texture was removed. The resulting frames are then encoded. The bit rate of the video sequence with the synthesized texture is less than the bit rate of the video sequence with the original texture. Also, the ability of a decoder to decode the new video sequence is not compromised because no assumptions are made about the texture synthesis capabilities of the decoder.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: August 9, 2011
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Adriana Dumitras, Barin Geoffry Haskell
  • Patent number: 7983499
    Abstract: A method and apparatus prioritizing video information during coding and decoding. Video information is received and an element of the video information, such as a visual object, video object layer, video object plane or keyregion, is identified. A priority is assigned to the identified element and the video information is encoded into a bitstream, such as a visual bitstream encoded using the MPEG-4 standard, including an indication of the priority of the element.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: July 19, 2011
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Barin Geoffry Haskell, Atul Puri, Robert Lewis Schmidt
  • Patent number: 7974346
    Abstract: A predictive video coder performs gradient prediction based on previous blocks of image data. For a new block of image data, the prediction determines a horizontal gradient and a vertical gradient from a block diagonally above the new block (vertically above a previous horizontally adjacent block). Based on these gradients, the encoder predicts image information based on image information of either the horizontally adjacent block or a block vertically adjacent to the new block. The encoder determines a residual that is transmitted in an output bitstream. The decoder performs the identical gradient prediction and predicts image information without need for overhead information. The decoder computes the actual information based on the predicted information and the residual from the bitstream.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: July 5, 2011
    Assignee: AT&T Intellectual II, L.P.
    Inventors: Barin Geoffry Haskell, Atul Puri, Robert Lewis Schmidt
  • Patent number: 7958532
    Abstract: Video-coded information is transmitted over a network at a priority level that is determined based on feedback from the network. In an embodiment, the feedback comprises a response to a request for information on whether the network currently has the available capacity to transmit additional high priority traffic. In an embodiment, a candidate base layer frame is transmitted over the network as a base layer frame if permission to send high priority data was granted and is transmitted over the network as an enhancement layer frame if permission to send high priority data was denied. In a further embodiment, the candidate base layer frame is deleted if permission to send high priority data was denied.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: June 7, 2011
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Baldine-Brunel Paul, Glenn L. Cash, M. Reha Civanlar, Barin Geoffry Haskell, Paul G. Howard, Atul Puri, Robert Lewis Schmidt
  • Patent number: 7945104
    Abstract: The invention provides devices and methods that process images. The invention processes a received signal representing information of texture and information of an image, which has the texture removed from at least one region. The image information is encoded to obtain encoded information of the image. An output signal is generated representing the texture information and the encoded image information. In another embodiment, the invention synthesizes texture based on the received texture information, decodes received image information, which is encoded, to obtain a decoded image, and then maps the synthesized texture onto the decoded image.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: May 17, 2011
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Adriana Dumitras, Barin Geoffry Haskell
  • Publication number: 20110085594
    Abstract: A method and apparatus for variable accuracy inter-picture timing specification for digital video encoding is disclosed. Specifically, the present invention discloses a system that allows the relative timing of nearby video pictures to be encoded in a very efficient manner. In one embodiment, the display time difference between a current video picture and a nearby video picture is determined. The display time difference is then encoded into a digital representation of the video picture. In a preferred embodiment, the nearby video picture is the most recently transmitted stored picture. For coding efficiency, the display time difference may be encoded using a variable length coding system or arithmetic coding. In an alternate embodiment, the display time difference is encoded as a power of two to reduce the number of bits transmitted.
    Type: Application
    Filed: December 17, 2010
    Publication date: April 14, 2011
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Publication number: 20110075739
    Abstract: A predictive video coder performs gradient prediction based on previous blocks of image data. For a new block of image data, the prediction determines a horizontal gradient and a vertical gradient from a block diagonally above the new block (vertically above a previous horizontally adjacent block). Based on these gradients, the encoder predicts image information based on image information of either the horizontally adjacent block or a block vertically adjacent to the new block. The encoder determines a residual that is transmitted in an output bitstream. The decoder performs the identical gradient prediction and predicts image information without need for overhead information. The decoder computes the actual information based on the predicted information and the residual from the bitstream.
    Type: Application
    Filed: November 30, 2010
    Publication date: March 31, 2011
    Applicant: AT&T Intellectual Property II, L.P.
    Inventors: Barin Geoffry Haskell, Atul Puri, Robert Lewis Schmidt
  • Publication number: 20110064142
    Abstract: Disclosed herein is a technique for delimiting the alpha channel at the NAL layer in codecs like H.264 to facilitate the optional nature of the alpha channel. In coded video sequences that include alpha, there is one alpha picture for every primary coded (e.g., luma-chroma) picture, and the coded alpha picture is contained in the same access unit as its corresponding primary coded picture. The alpha coded slice NAL units of each access unit are sent after the NAL units of the primary coded picture and redundant coded pictures, if any. The presence or absence of the alpha NAL units does not affect the decoding of the remaining NAL units in any way.
    Type: Application
    Filed: November 22, 2010
    Publication date: March 17, 2011
    Applicant: Apple Inc.
    Inventors: Barin Geoffry Haskell, David William Singer
  • Patent number: 7903730
    Abstract: A method and apparatus for variable accuracy inter-picture timing specification for digital video encoding is disclosed. Specifically, the present invention discloses a system that allows the relative timing of nearby video pictures to be encoded in a very efficient manner. In one embodiment, the display time difference between a current video picture and a nearby video picture is determined. The display time difference is then encoded into a digital representation of the video picture. In a preferred embodiment, the nearby video picture is the most recently transmitted stored picture. For coding efficiency, the display time difference may be encoded using a variable length coding system or arithmetic coding. In an alternate embodiment, the display time difference is encoded as a power of two to reduce the number of bits transmitted.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: March 8, 2011
    Assignee: Apple Inc.
    Inventors: Barin Geoffry Haskell, David William Singer, Adriana Dumitras, Atul Puri
  • Patent number: 7889792
    Abstract: An effective method for dynamically selecting the number of I, P and B frames during video coding is proposed. Short-term look-ahead analysis of a video sequence yields a variable number of B frames to be coded between any two stored pictures. The first picture of a group of frames (GOF) may be coded as a B picture. Motion speed is calculated for each picture of the GOF with respect to the first picture of the GOF. Subject to exceptions, as long as the subsequent pictures exhibit motion speeds that are similar and motion vector displacements that are co-linear with those of the first picture in the GOF, they may be coded as B pictures. When a picture is encountered having a motion speed that is not the same as that of the first picture in the GOF, the picture may be coded as a P picture. In some embodiments, a sequence of B pictures that terminates in a P picture may be called a “group of frames” (GOF).
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: February 15, 2011
    Assignee: Apple Inc.
    Inventors: Adriana Dumitras, Barin Geoffry Haskell