Patents by Inventor Barnett Rosenblum

Barnett Rosenblum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8835625
    Abstract: Disclosed, among other things, are compounds having the structure wherein X comprises a bond or a linker, LABEL comprises at least one detectable label, W1 taken alone is —H or —OH, W2 is —OH or a non-extendable moiety, W3 when taken alone is —H or when taken together with W1 is —CH2—O—, and W4 is OH, monophosphate, diphosphate, or triphosphate. Also disclosed are labeled polynucleotide compounds and methods of use thereof.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 16, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Barnett Rosenblum, Geun-sook Jeon, Shaheer Khan
  • Publication number: 20140234940
    Abstract: Provided herein are mutant DNA-dependent polymerases which are derived from, or otherwise related to, wild type RB69 DNA polymerase. These mutant polymerases are capable of selectively binding labeled nucleotides. These mutant polymerases are also capable of incorporating a variety of naturally occurring and modified nucleotides, including, for example, terminator nucleotides.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 21, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Marian PERIS, Michael PHELAN, Barnett ROSENBLUM, Stephen HENDRICKS
  • Publication number: 20140234853
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Application
    Filed: December 16, 2013
    Publication date: August 21, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Peter VANDER HORN, Cheng-Yao CHEN, Guobin LUO, Michael PREVITE, Jamshid TEMIROV, Theo NIKIFOROV, Zhaohui ZHOU, Hongye SUN, Yufang WANG, Stefanie Yukiko NISHIMURA, Hongyi WANG, Marian PERIS, Barnett ROSENBLUM, Michael PHELAN
  • Patent number: 8703461
    Abstract: Provided herein are mutant DNA-dependent polymerases which are derived from, or otherwise related to, wild type RB69 DNA polymerase. These mutant polymerases are capable of selectively binding labeled nucleotides. These mutant polymerases are also capable of incorporating a variety of naturally occurring and modified nucleotides, including, for example, terminator nucleotides.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: April 22, 2014
    Assignee: Life Technologies Corporation
    Inventors: Marian Peris, Michael Phelan, Barnett Rosenblum, Stephen Hendricks
  • Patent number: 8389699
    Abstract: Disclosed are methods and kits applicable to sequencing methods, such as Sanger dideoxy sequencing methods. The methods and kits disclosed utilize a cationically charged nucleic acid terminator in combination with a discriminatory polymerase.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: March 5, 2013
    Assignee: Applied Biosystems, LLC
    Inventors: Barnett Rosenblum, Steven Menchen
  • Publication number: 20130012658
    Abstract: The disclosure relates to methods of making polymer particles, said methods including the steps of: making an aqueous gel reaction mixture; forming an emulsion having dispersed aqueous phase micelles of gel reaction mixture in a continuous phase; adding an initiator oil comprising at least one polymerization initiator to the continuous phase; and performing a polymerization reaction in the micelles. Further, the initiator oil is present in a volume % relative to a volume of the aqueous gel reaction mixture of between about 1 vol % to about 20 vol %. The disclosure also relates to methods of making nucleic acid polymer particles having the same method steps and wherein the aqueous gel reaction mixture includes a nucleic acid fragment, such as a primer.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 10, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: David Light, Barnett Rosenblum
  • Patent number: 8058414
    Abstract: Nucleotide analogs that can sustain the enzymatic synthesis of double-stranded nucleic acid from a nucleic template are described. The nucleotide analogs include: (i) a base selected from the group consisting of adenine, guanine, cytosine, thymine, uracil and their analogs; (ii) a label attached to the base or analog of the base via a cleavable linker; (iii) a deoxyribose; and (iv) one or more phosphate groups. The linker and/or the label inhibits template directed polymerase incorporation of a further nucleotide substrate onto an extended primer strand. In addition, cleavage of the linker leaves a residue attached to the base which is not present in the natural nucleotide and which does not inhibit extension of the primer strand. The nucleotide analogs can therefore be used as reversible terminators in sequencing by synthesis methods without blocking the 3? hydroxyl group. Methods of sequencing DNA using the substrates are also described.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: November 15, 2011
    Assignee: Life Technologies Corporation
    Inventors: Steven Menchen, Barnett Rosenblum, Paul Kenney, Shoeb Khan, Zhaochun Ma, Jer-Kang Chen, Joe Y. Lam, Boli Huang
  • Publication number: 20100280246
    Abstract: Novel linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye are provided. These linkers facilitate the efficient transfer of energy between a donor and acceptor dye in an energy transfer dye. One of these linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye has the general structure R21Z1C(O)R22R28 where R21 is a C1-5 alkyl attached to the donor dye, C(O) is a carbonyl group, Z1 is either NH, sulfur or oxygen, R22 is a substituent which includes an alkene, diene, alkyne, a five and six membered ring having at least one unsaturated bond or a fused ring structure which is attached to the carbonyl carbon, and R28 includes a functional group which attaches the linker to the acceptor dye.
    Type: Application
    Filed: December 28, 2006
    Publication date: November 4, 2010
    Applicant: Applera Corporation
    Inventors: Linda G. Lee, Sandra L. Spurgeon, Barnett Rosenblum
  • Patent number: 7825237
    Abstract: Novel linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye are provided. These linkers facilitate the efficient transfer of energy between a donor and acceptor dye in an energy transfer dye. One of these linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye has the general structure R21Z1C(O)R22R28 where R21 is a C1-5 alkyl attached to the donor dye, C(O) is a carbonyl group, Z1 is either NH, sulfur or oxygen, R22 is a substituent which includes an alkene, diene, alkyne, a five and six membered ring having at least one unsaturated bond or a fused ring structure which is attached to the carbonyl carbon, and R28 includes a functional group which attaches the linker to the acceptor dye.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: November 2, 2010
    Assignee: Applied Biosystems, LLC
    Inventors: Linda Lee, Sandra Spurgeon, Barnett Rosenblum
  • Publication number: 20090269759
    Abstract: Nucleotide analogs that can sustain the enzymatic synthesis of double-stranded nucleic acid from a nucleic template are described. The nucleotide analogs include: (i) a base selected from the group consisting of adenine, guanine, cytosine, thymine, uracil and their analogs; (ii) a label attached to the base or analog of the base via a cleavable linker; (iii) a deoxyribose; and (iv) one or more phosphate groups. The linker and/or the label inhibits template directed polymerase incorporation of a further nucleotide substrate onto an extended primer strand. In addition, cleavage of the linker leaves a residue attached to the base which is not present in the natural nucleotide and which does not inhibit extension of the primer strand. The nucleotide analogs can therefore be used as reversible terminators in sequencing by synthesis methods without blocking the 3? hydroxyl group. Methods of sequencing DNA using the substrates are also described.
    Type: Application
    Filed: January 16, 2009
    Publication date: October 29, 2009
    Applicant: LIFE TECHNOLOGIES
    Inventors: Steven M. Menchen, JR., Barnett Rosenblum, Paul Kenney, Shoeb I. Khan, Zhaochun Ma, Jer-Kang Chen, Joe Lam, Boli Huang
  • Patent number: 7595162
    Abstract: Novel linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye are provided. These linkers faciliate the efficient transfer of energy between a donor and acceptor dye in an energy transfer dye. One of these linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye has the general structure R21Z1C(O)R22R28 where R21 is a C1-5 alkyl attached to the donor dye, C(O) is a carbonyl group, Z1 is either NH, sulfur or oxygen, R22 is a substituent which includes an alkene, diene, alkyne, a five and six membered ring having at least one unsaturated bond or a fused ring structure which is attached to the carbonyl carbon, and R28 includes a functional group which attaches the linker to the acceptor dye.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: September 29, 2009
    Assignee: Applied Biosystems, LLC
    Inventors: Linda G. Lee, Sandra L. Spurgeon, Barnett Rosenblum
  • Patent number: 7452672
    Abstract: Novel linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye are provided. These linkers facilitate the efficient transfer of energy between a donor and acceptor dye in an energy transfer dye. One of these linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye has the general structure R21Z1C(O)R22R28 where R21 is a C1-5 alkyl attached to the donor dye, C(O) is a carbonyl group, Z1 is either NH, sulfur or oxygen, R22 is a substituent which includes an alkene, diene, alkyne, a five and six membered ring having at least one unsaturated bond or a fused ring structure which is attached to the carbonyl carbon, and R28 includes a functional group which attaches the linker to the acceptor dye.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 18, 2008
    Assignee: Applied Biosystems Inc.
    Inventors: Linda G. Lee, Sandra L. Spurgeon, Barnett Rosenblum
  • Patent number: 7449298
    Abstract: Novel linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye are provided. These linkers faciliate the efficient transfer of energy between a donor and acceptor dye in an energy transfer dye. One of these linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye has the general structure R21Z1C(O)R22R28 where R21 is a C1-5 alkyl attached to the donor dye, C(O) is a carbonyl group, Z1 is either NH, sulfur or oxygen, R22 is a substituent which includes an alkene, diene, alkyne, a five and six membered ring having at least one unsaturated bond or a fused ring structure which is attached to the carbonyl carbon, and R28 includes a functional group which attaches the linker to the acceptor dye.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 11, 2008
    Assignee: Applied Biosystems Inc.
    Inventors: Linda G. Lee, Sandra L. Spurgeon, Barnett Rosenblum
  • Patent number: 7449149
    Abstract: Novel linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye are provided. These linkers facilitate the efficient transfer of energy between a donor and acceptor dye in an energy transfer dye. One of these linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye has the general structure R21Z1C(O)R22R28 where R21 is a C1-5 alkyl attached to the donor dye, C(O) is a carbonyl group, Z1 is either NH, sulfur or oxygen, R22 is a substituent which includes an alkene, diene, alkyne, a five and six membered ring having at least one unsaturated bond or a fused ring structure which is attached to the carbonyl carbon, and R28 includes a functional group which attaches the linker to the acceptor dye.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 11, 2008
    Assignee: Applied Biosystems Inc.
    Inventors: Linda G. Lee, Sandra L. Spurgeon, Barnett Rosenblum
  • Publication number: 20080268509
    Abstract: Novel linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye are provided. These linkers faciliate the efficient transfer of energy between a donor and acceptor dye in an energy transfer dye. One of these linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye has the general structure R21Z1C(O)R22R28 where R21 is a C1-5 alkyl attached to the donor dye, C(O) is a carbonyl group, Z1 is either NH, sulfur or oxygen, R22 is a substituent which includes an alkene, diene, alkyne, a five and six membered ring having at least one unsaturated bond or a fused ring structure which is attached to the carbonyl carbon, and R28 includes a functional group which attaches the linker to the acceptor dye.
    Type: Application
    Filed: December 29, 2006
    Publication date: October 30, 2008
    Applicant: Applera Corporation
    Inventors: Linda G. Lee, Sandra L. Spurgeon, Barnett Rosenblum
  • Patent number: 7432058
    Abstract: Novel linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye are provided. These linkers faciliate the efficient transfer of energy between a donor and acceptor dye in an energy transfer dye. One of these linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye has the general structure R21Z1C(O)R22R28 where R21 is a C1-5 alkyl attached to the donor dye, C(O) is a carbonyl group, Z1 is either NH, sulfur or oxygen, R22 is a substituent which includes an alkene, diene, alkyne, a five and six membered ring having at least one unsaturated bond or a fused ring structure which is attached to the carbonyl carbon, and R28 includes a functional group which attaches the linker to the acceptor dye.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: October 7, 2008
    Assignee: Applera Corporation
    Inventors: Linda G. Lee, Sandra L. Spurgeon, Barnett Rosenblum
  • Patent number: 7423140
    Abstract: Novel linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye are provided. These linkers facilitate the efficient transfer of energy between a donor and acceptor dye in an energy transfer dye. One of these linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye has the general structure R21Z1C(O)R22R28 where R21 is a C1-5 alkyl attached to the donor dye, C(O) is a carbonyl group, Z1 is either NH, sulfur or oxygen, R22 is a substituent which includes an alkene, diene, alkyne, a five and six membered ring having at least one unsaturated bond or a fused ring structure which is attached to the carbonyl carbon, and R28 includes a functional group which attaches the linker to the acceptor dye.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: September 9, 2008
    Assignee: Applied Biosystems Inc.
    Inventors: Linda G. Lee, Sandra L. Spurgeon, Barnett Rosenblum
  • Patent number: 7399854
    Abstract: Novel linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye are provided. These linkers faciliate the efficient transfer of energy between a donor and acceptor dye in an energy transfer dye. One of these linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye has the general structure R21Z1C(O)R22R28 where R21 is a C1-5 alkyl attached to the donor dye, C(O) is a carbonyl group, Z1 is either NH, sulfur or oxygen, R22 is a substituent which includes an alkene, diene, alkyne, a five and six membered ring having at least one unsaturated bond or a fused ring structure which is attached to the carbonyl carbon, and R28 includes a functional group which attaches the linker to the acceptor dye.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: July 15, 2008
    Assignee: Applera Corporation
    Inventors: Linda G. Lee, Sandra L. Spurgeon, Barnett Rosenblum
  • Patent number: 7388092
    Abstract: Novel linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye are provided. These linkers faciliate the efficient transfer of energy between a donor and acceptor dye in an energy transfer dye. One of these linkers for linking a donor dye to an acceptor dye in an energy transfer fluorescent dye has the general structure R21Z1C(O)R22R28 where R21 is a C1-5 alkyl attached to the donor dye, C(O) is a carbonyl group, Z1 is either NH, sulfur or oxygen, R22 is a substituent which includes an alkene, diene, alkyne, a five and six membered ring having at least one unsaturated bond or a fused ring structure which is attached to the carbonyl carbon, and R28 includes a functional group which attaches the linker to the acceptor dye.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: June 17, 2008
    Assignee: Applera Corporation
    Inventors: Linda G. Lee, Sandra L. Spurgeon, Barnett Rosenblum
  • Publication number: 20070254298
    Abstract: Atropisomeric energy-transfer dye compounds are disclosed. A variety of molecular biology applications utilize atropisomeric xanthene fluorescent dyes as labels for substrates such as nucleotides, nucleosides, polynucleotides, polypeptides and carbohydrates. Methods include DNA sequencing, DNA fragment analysis, PCR, SNP analysis, oligonucleotide ligation, amplification, minisequencing, and primer extension.
    Type: Application
    Filed: April 9, 2007
    Publication date: November 1, 2007
    Applicant: APPLERA CORPORATION, Applied Biosystems Group
    Inventors: Linda Lee, Meng Taing, Barnett Rosenblum