Patents by Inventor Barry A. Fetzer

Barry A. Fetzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8763462
    Abstract: A probe is used to inspect the health of a corner radius within an elongate internal cavity of a structure. The probe is transported through the cavity on a carriage that maintains the probe a substantially constant distance from the corner radius as the carriage traverses changes in the cross sectional shape of the cavity.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: July 1, 2014
    Assignee: The Boeing Company
    Inventors: Barry A. Fetzer, Patrick Lee Anderson, Hien T. Bui, Steven Ray Walton
  • Publication number: 20140116144
    Abstract: A method comprises positioning an ultrasonic probe against a surface of an item. The probe includes a chamber formed in part by a flexible membrane, which is opposite the surface. The method further comprises moving the probe along the surface while varying chamber pressure to flex the membrane to accommodate the surface.
    Type: Application
    Filed: January 6, 2014
    Publication date: May 1, 2014
    Applicant: THE BOEING COMPANY
    Inventors: Barry A. Fetzer, James C. Kennedy, Thomas E. Riechers
  • Publication number: 20140060197
    Abstract: An ultrasonic inspection device employs a transducer incorporating an ultrasonic array and a positioner/holder having abase with a rail extending from the base to support the transducer in at least two lateral positions. A guide extends from the base for contact with a web of a composite shape, the guide maintaining the rail substantially perpendicular to the web. An encoder supported by the base and contacts a flange of the composite shape. The Positioner/holder is adapted for longitudinal motion along the composite shape to create C-scans with the transducer.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: THE BOEING COMPANY
    Inventors: Patrick L. Anderson, Barry A. Fetzer
  • Patent number: 8650958
    Abstract: An ultrasonic probe for examining an item. The probe includes a body having a contact surface adapted for contacting the item when being examined and an ultrasonic transducer attached to the body and spaced from the contact surface. The probe further includes a spacer positioned in the body between the transducer and the contact surface for spacing the transducer from the item when being examined. The spacer includes a coupling surface facing the item when being examined and a transducer surface facing the transducer. The probe also includes a fluid outlet positioned adjacent the coupling surface of the spacer for delivering coupling fluid to the coupling surface as a film so that the coupling fluid tends to maintain contact with the spacer due to surface tension after the fluid is delivered through the outlet.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: February 18, 2014
    Assignee: The Boeing Company
    Inventors: Barry A. Fetzer, James C. Kennedy, Thomas E. Riechers
  • Publication number: 20140005840
    Abstract: A system and method that allow inspection of hollow structures made of composite material, such as an integrally stiffened wing box of an aircraft. A wing box comprises top and bottom skins connected by a plurality of spaced spars. The system employs a plurality of scanners for inspecting different portions of each spar. The system uses dynamically controlled magnetic coupling to connect an external drive tractor to computer-controlled scanners that carry respective sensors, e.g., linear ultrasonic transducer arrays. A system operator can control the various components by means of a graphical user interface comprising multiple interaction regions that represent the individual scanner motion paths and are associated with respective motion script files.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: THE BOEING COMPANY
    Inventors: William P. Motzer, James C. Kennedy, Michael C. Hutchinson, Martin L. Freet, Ronald E. VonWahlde, Steven Ray Walton, Jeffry J. Garvey, Scott W. Lea, James J. Troy, Daniel James Wright, Hien T. Bui, Michael Joseph Duncan, Mark L. Little, William Joseph Tapia, Barry A. Fetzer
  • Publication number: 20130340531
    Abstract: System and method for enabling ultrasonic inspection of a variable and irregular shape. The system comprises one or more ultrasonic pulser/receivers, one or more ultrasonic transducer arrays, a shoe or jig to hold and position the array(s), data acquisition software to drive the array(s), and data analysis software to select a respective best return signal for each pixel to be displayed. This system starts with information about the general orientation of the array relative to the part and a general predicted part shape. More specific orientation of the transmitted ultrasound beams relative to the part surface is done electronically by phasing the elements in the array(s) to cover the expected (i.e., predicted) surface as well as the full range of part surface variability.
    Type: Application
    Filed: June 26, 2012
    Publication date: December 26, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Michael C. Hutchinson, James C. Kennedy, Barry A. Fetzer, Michael Joseph Duncan, Navpreet S. Grewal, Steven Ray Walton, Hien T. Bui
  • Publication number: 20130319120
    Abstract: An apparatus for inspecting a tubular workpiece may include a probe assembly and a rotation mechanism. The probe assembly may include a transducer array positionable adjacent to an inner surface of the tubular workpiece. The probe assembly may generate transmitted sound waves and may receive reflected sound waves. The rotation mechanism may rotate the probe assembly relative to the tubular workpiece in a manner such that the transducer array passes over the inner surface in a circumferential direction during transmission of the transmitted sound waves.
    Type: Application
    Filed: May 29, 2012
    Publication date: December 5, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Barry A. Fetzer, Navpreet S. Grewal, Peter Kuk-kyung Hwang, William R. Schell, Kate Brown Boudreau
  • Patent number: 8336384
    Abstract: An ultrasonic probe includes a probe body having a contact surface and a cavity that is open at the contact surface, an ultrasonic transducer carried by the body, and a spacer within the cavity. The spacer has a first surface acoustically coupled to the transducer, and a second (coupling) surface within the cavity. The spacer propagates an acoustic signal between the transducer and the coupling surface. The coupling surface is spaced apart from the contact surface to form a recess within the body. The body further has at least one port for circulating a coupling fluid into the recess. Depth of the recess is selected to balance gravitational force on the coupling fluid versus surface tension of the coupling fluid so a bead of the fluid forms over an edge of a structure under inspection as the probe is moved over the edge.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: December 25, 2012
    Assignee: The Boeing Company
    Inventors: Barry A. Fetzer, James C. Kennedy, Thomas E. Riechers, Fred D Young
  • Patent number: 8333115
    Abstract: An ultrasonic inspection apparatus operable within a channel associated with a structure is described. The apparatus includes at least one transducer and a holder. The holder includes a material having a flexibility and tensile strength such that a spring force is provided for maintaining a position of said holder within the channel of the structure. The holder includes a plurality of transducer indexing nodes therein for mounting of the transducers, and each node provides a single point of contact between the holder and the transducer. The transducer indexing nodes are fabricated having a material flexibility and tensile strength with respect to a remainder of the holder for positioning of the transducers along surface variances that define the channel.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: December 18, 2012
    Assignee: The Boeing Company
    Inventors: Jeffry James Garvey, Patrick L. Anderson, Barry A. Fetzer
  • Patent number: 8286487
    Abstract: An ultrasonic aperture scanning system includes a transducer insert having an insert plug, an ultrasonic transducer carried by the transducer insert and an indicator unit having at least one indicator interfacing with the ultrasonic transducer.
    Type: Grant
    Filed: January 31, 2009
    Date of Patent: October 16, 2012
    Assignee: The Boeing Company
    Inventors: Jeffrey R. Kollgaard, Barry A. Fetzer, Kevin M. Uhl
  • Publication number: 20120174674
    Abstract: A geometry compensating transducer attachment for ultrasonic inspection of a structure includes a geometry-compensating structure having at least one angled surface configured to engage the structure to be inspected, and the geometry-compensating structure having an acoustic velocity generally matching an acoustic velocity of the structure to be inspected.
    Type: Application
    Filed: June 8, 2011
    Publication date: July 12, 2012
    Inventors: Jeffrey R. Kollgaard, Barry A. Fetzer, Christopher R. Brown, William J. Tapia, David Brooks
  • Patent number: 7975549
    Abstract: A non-destructive inspection method, apparatus and system are provided for inspecting a workpiece having a curved surface with at least one predefined radius of curvature. The apparatus, such as an inspection probe, includes a plurality of transducer elements positioned in an arcuate configuration having a predefined radius of curvature and a curved delay line. The curved delay line has an outer arcuate surface having a predefined radius of curvature that matches the predefined radius of curvature of the transducer elements. The curved delay line also has an inner arcuate surface that has at least one predefined radius of curvature that matches the at least one predefined radius of curvature of the curved surface of the workpiece. In addition to the inspection probe, the system includes an excitative source for triggering the transducer elements to emit signals into the workpiece and a computing device to receive the return signals.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: July 12, 2011
    Assignee: The Boeing Company
    Inventors: Barry A. Fetzer, Hien T. Bui
  • Patent number: 7895895
    Abstract: A computer implemented method, or hardware filtration apparatus, and computer usable program code for measuring porosity in materials. An ultrasonic signal is emitted from a transmitting transducer in an ultrasonic measurement system into a material. A response signal is received at a receiving transducer in the ultrasonic measurement system from the material. The response signal is filtered to pass only frequencies in the response signal within a selected frequency range to form a filtered response signal. A porosity level of the material is identified using the filtered response signal.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: March 1, 2011
    Assignee: The Boeing Company
    Inventors: Jeffrey R. Kollgaard, Carrie Ann Decker, Barry A. Fetzer, Kevin M. Uhl
  • Publication number: 20100198076
    Abstract: An ultrasonic aperture scanning system includes a transducer insert having an insert plug, an ultrasonic transducer carried by the transducer insert and an indicator unit having at least one indicator interfacing with the ultrasonic transducer.
    Type: Application
    Filed: January 31, 2009
    Publication date: August 5, 2010
    Inventors: Jeffrey R. Kollgaard, Barry A. Fetzer, Kevin M. Uhl
  • Patent number: 7690259
    Abstract: Apparatus, systems, and methods for inspecting a structure are provided which permit inspection of uniquely shaped structures such as fuselage frames and shear ties. Probes may be constructed from rapid prototyping. Inspection may be performed manually and may use a portable function support system for delivering fluid couplant, controlling transmit and receive functions of the inspection sensors, and delivering immediate visual analysis for an operator. Integrated ultrasonic inspection apparatus, systems, and methods facilitate fast and efficient custom inspection devices and inspecting otherwise difficult-to-inspect structures.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: April 6, 2010
    Assignee: The Boeing Company
    Inventors: Hien T. Bui, Fred D. Young, Mark A. Lee, Richard C. Krotzer, Clyde T. Uyehara, Barry A. Fetzer
  • Publication number: 20100064812
    Abstract: An ultrasonic probe includes a probe body having a contact surface and a cavity that is open at the contact surface, an ultrasonic transducer carried by the body, and a spacer within the cavity. The spacer has a first surface acoustically coupled to the transducer, and a second (coupling) surface within the cavity. The spacer propagates an acoustic signal between the transducer and the coupling surface. The coupling surface is spaced apart from the contact surface to form a recess within the body. The body further has at least one port for circulating a coupling fluid into the recess. Depth of the recess is selected to balance gravitational force on the coupling fluid versus surface tension of the coupling fluid so a bead of the fluid forms over an edge of a structure under inspection as the probe is moved over the edge.
    Type: Application
    Filed: November 27, 2009
    Publication date: March 18, 2010
    Applicant: THE BOEING COMPANY
    Inventors: Barry A. Fetzer, James C. Kennedy, Thomas E. Riechers, Fred D. Young
  • Patent number: 7644618
    Abstract: A method of inspecting a radius area of composite parts with an ultrasonic inspection system, the system includes at least one ultrasonic probe, an upper sliding surface, a lower sliding surface, an adjustable guide rail, and an adjustable encoder wheel rotatably coupled to a rotary encoder, is provided. The method includes generating a high frequency sound wave using the probe including a radius of curvature extending from a center point, the sound wave travels partially through the part, adjusting the guide rail to align the center point of the probe with a center axis of a part corner portion, sliding the part through the inspection system to inspect the corner portion using the sound wave by rotating the wheel and rotary encoder such that the arcuate distance of the part is recorded, adjusting the wheel to avoid any apertures defined within the part, and processing the sound wave information.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: January 12, 2010
    Assignee: The Boeing Company
    Inventors: Barry A. Fetzer, William O. Walters, Hien T. Bui
  • Patent number: 7637163
    Abstract: An ultrasonic probe for examining an item. The probe includes a body having a contact surface adapted for contacting the item when being examined and an ultrasonic transducer attached to the body and spaced from the contact surface. The probe further includes a spacer positioned in the body between the transducer and the contact surface for spacing the transducer from the item when being examined. The spacer includes a coupling surface facing the item when being examined and a transducer surface facing the transducer. The probe also includes a fluid outlet positioned adjacent the coupling surface of the spacer for delivering coupling fluid to the coupling surface as a film so that the coupling fluid tends to maintain contact with the spacer due to surface tension after the fluid is delivered through the outlet.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: December 29, 2009
    Assignee: The Boeing Company
    Inventors: Barry A. Fetzer, Fred D. Young
  • Patent number: 7628075
    Abstract: Improved apparatus, systems, and methods for inspecting a structure are provided that use a probe having two ultrasonic transducer arrays. This enables simultaneous testing using two different test frequencies. The probe uses pulse echo ultrasonic signals at different frequencies to inspect the structure. The probe includes a support body having a fluid conduit formed therein. The fluid conduit provides flow paths for a couplant (such as water) that is used to couple the ultrasonic signals between the structure under test and the arrays. The fluid conduit is configured to quickly eject couplant and bubbles contained in the couplant.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: December 8, 2009
    Assignee: The Boeing Company
    Inventors: James C. Kennedy, Barry A. Fetzer, Jeffry J. Garvey, Mark L. Little
  • Patent number: 7562576
    Abstract: An ultrasonic transducer device is pressed against the front surface of a structure, emits an ultrasonic pulse into the structure, and detects an echo profile from the structure. An indicator is activated if the echo profile includes a return pulse that at least is received from between the front surface and the back surface of the structure. An ultrasonic transducer device includes an ultrasonic transducer and a coupling element coupled to the transducer for disposition between the transducer and a surface of a structure. The coupling element serves as a delay line that allows time for quiescence in the transducer so that return pulses from shallow depths can be detected. The ultrasonic transducer is activated when multiple switches are pressed against a surface thus assuring both firm coupling and perpendicular disposition of the acoustic axis of the transducer relative to the surface.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: July 21, 2009
    Assignee: The Boeing Company
    Inventors: Barry A. Fetzer, Jeffrey R. Kollgaard, Clyde T. Uyehara