Patents by Inventor Barry D. Curtin

Barry D. Curtin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951322
    Abstract: Accessories of a medical device, such as a defibrillator, are described. The accessories reduce delays in treating or monitoring a patient by increasing the efficiency of using, and the ease of use of, the medical device. An adjustable kickstand is movable between a collapsed and extended position to recline the medical device. In the reclined position, a display of the medical device can be more easily viewed by the user. Storage bags can be coupled to the medical device to efficiently store accessories for use with the medical device. The stored accessories can be coupled to the medical device while the accessories are stored within the storage bags. A port guard can protect and shield a connection between a cable and a port of the medical device to prevent the cable (e.g., an ECG cable) from being disconnected from the port of the medical device.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: April 9, 2024
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Christopher G. Alviar, Jeremy Edward Brummett, Christopher William Egbert, Deniz Icingir, Sarah Mynhier, Jeremy Wong, Neal Stanley Clark, Barry D. Curtin, Suneethi Gudapati, Bethany J. Johnson, Marc Mckissack, Marie Pahlmeyer, Brigitta M. Suwandana
  • Patent number: 11920361
    Abstract: A docking station for a medical device is described. In some examples, the docking station includes a frame and a base plate coupled to the frame. At least a portion of the base plate is coupled to a lower portion of the frame. In some examples, an electronic connector of the docking station is configured to couple to the medical device and to provide power to the medical device when the medical device is docked to the docking station. In some examples, a docking mechanism is coupled to an upper portion of the frame and configured to retain the medical device.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: March 5, 2024
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Barry D. Curtin, Alexander Hamilton, Kristina Edmonson, David Andrews, Christopher G. Alviar, Neal Stanley Clark, Benjamin Danziger, Christopher William Egbert, Jason Fouts, Matthew Malone, Joshua Berndt, Brigitta M. Suwandana, Jeremy Edward Brummett
  • Publication number: 20210290968
    Abstract: Accessories of a medical device, such as a defibrillator, are described. The accessories reduce delays in treating or monitoring a patient by increasing the efficiency of using, and the ease of use of, the medical device. An adjustable kickstand is movable between a collapsed and extended position to recline the medical device. In the reclined position, a display of the medical device can be more easily viewed by the user. Storage bags can be coupled to the medical device to efficiently store accessories for use with the medical device. The stored accessories can be coupled to the medical device while the accessories are stored within the storage bags. A port guard can protect and shield a connection between a cable and a port of the medical device to prevent the cable (e.g., an ECG cable) from being disconnected from the port of the medical device.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 23, 2021
    Inventors: Christopher G. Alviar, Jeremy Edward Brummett, Christopher William Egbert, Deniz Icingir, Sarah Mynhier, Jeremy Wong, Neal Stanley Clark, Barry D. Curtin, Suneethi Gudapati, Bethany J. Johnson, Marc Mckissack, Marie Pahlmeyer, Brigitta M. Suwandana
  • Publication number: 20210236831
    Abstract: A medical device housing having a reduced footprint is described. The medical device housing includes a flange coupled to a first portion of the housing and a second portion of the housing that is configured to be coupled to the flange to substantially enclose an electronic component(s) within an interior of the medical device housing. The first portion of the housing includes a support(s) that supports the flange within the first portion. In some examples, a trench is formed between an interior wall of the first portion of the housing and the flange. An adhesive is deposited within the trench to bond the flange to the first portion of the housing. The second portion of the housing is configured to decouple from the flange to allow access to the interior of the medical device housing, such as for maintenance or repairs.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 5, 2021
    Inventors: Cathlene Buchanan, Chris Egbert, Barry D. Curtin, David Wesche, Ken Dickenson
  • Patent number: 11064932
    Abstract: A portable medical device having an intravenous line flow sensor integrated into a cable. The portable medical device may be a defibrillator having an ECG or electrode cable couple to ECG or electrode leads. The flow sensor may be integrated into the ECG or electrode cable. The portable medical device uses the flow sensor to capture and store information about fluids delivered to a patient being treated with the portable medical device. The information may include total volume provided, flow rate, and the like. The information may then be used to evaluate the treatment provided to the patient.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: July 20, 2021
    Assignee: Physio-Control, Inc.
    Inventors: Robert G. Walker, Barry D. Curtin
  • Publication number: 20210218207
    Abstract: A docking station for a medical device is described. In some examples, the docking station includes a frame and a base plate coupled to the frame. At least a portion of the base plate is coupled to a lower portion of the frame. In some examples, an electronic connector of the docking station is configured to couple to the medical device and to provide power to the medical device when the medical device is docked to the docking station. In some examples, a docking mechanism is coupled to an upper portion of the frame and configured to retain the medical device.
    Type: Application
    Filed: March 26, 2021
    Publication date: July 15, 2021
    Inventors: Barry D. Curtin, Alexander Hamilton, Kristina Edmonson, David Andrews, Christopher G. Alviar, Neal Stanley Clark, Benjamin Danziger, Christopher William Egbert, Jason Fouts, Matthew Malone, Joshua Berndt, Brigitta M. Suwandana
  • Patent number: 10926099
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 23, 2021
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Publication number: 20190387989
    Abstract: A portable medical device having an intravenous line flow sensor integrated into a cable. The portable medical device may be a defibrillator having an ECG or electrode cable couple to ECG or electrode leads. The flow sensor may be integrated into the ECG or electrode cable. The portable medical device uses the flow sensor to capture and store information about fluids delivered to a patient being treated with the portable medical device. The information may include total volume provided, flow rate, and the like. The information may then be used to evaluate the treatment provided to the patient.
    Type: Application
    Filed: September 9, 2019
    Publication date: December 26, 2019
    Inventors: Robert G. Walker, Barry D. Curtin
  • Publication number: 20190381330
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: December 21, 2018
    Publication date: December 19, 2019
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Patent number: 10405767
    Abstract: A portable medical device having an intravenous line flow sensor integrated into a cable. The portable medical device may be a defibrillator having an ECG or electrode cable couple to ECG or electrode leads. The flow sensor may be integrated into the ECG or electrode cable. The portable medical device uses the flow sensor to capture and store information about fluids delivered to a patient being treated with the portable medical device. The information may include total volume provided, flow rate, and the like. The information may then be used to evaluate the treatment provided to the patient.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: September 10, 2019
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Robert G. Walker, Barry D. Curtin
  • Patent number: 10159846
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 25, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Patent number: 10124181
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: November 13, 2018
    Assignee: PHYSIO-CONTROL., INC.
    Inventors: David Dean Aoyama, Matthew Lawrence Bielstein, Barry D. Curtin, Kevin C. Drew, Mina Lim, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Patent number: 10118048
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: November 6, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Patent number: 10105546
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 23, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Barry D. Curtin, John Daynes, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Publication number: 20180199842
    Abstract: A portable medical device having an intravenous line flow sensor integrated into a cable. The portable medical device may be a defibrillator having an ECG or electrode cable couple to ECG or electrode leads. The flow sensor may be integrated into the ECG or electrode cable. The portable medical device uses the flow sensor to capture and store information about fluids delivered to a patient being treated with the portable medical device. The information may include total volume provided, flow rate, and the like. The information may then be used to evaluate the treatment provided to the patient.
    Type: Application
    Filed: July 31, 2017
    Publication date: July 19, 2018
    Inventors: ROBERT G. WALKER, BARRY D. CURTIN
  • Patent number: 9872998
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: January 23, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Matthew Lawrence Bielstein, Barry D. Curtin, Kevin C. Drew, Mina Lim, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Patent number: 9717435
    Abstract: A portable medical device having an intravenous line flow sensor integrated into a cable. The portable medical device may be a defibrillator having an ECG or electrode cable couple to ECG or electrode leads. The flow sensor may be integrated into the ECG or electrode cable. The portable medical device uses the flow sensor to capture and store information about fluids delivered to a patient being treated with the portable medical device. The information may include total volume provided, flow rate, and the like. The information may then be used to evaluate the treatment provided to the patient.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: August 1, 2017
    Assignee: Physio-Control, Inc.
    Inventors: Robert G. Walker, Barry D. Curtin
  • Publication number: 20170021183
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: October 3, 2016
    Publication date: January 26, 2017
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Patent number: 9457197
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 4, 2016
    Assignee: Physio-Control, Inc.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Patent number: D990428
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: June 27, 2023
    Assignee: Physio-Control, Inc.
    Inventors: Christopher G. Alviar, Neal Stanley Clark, Barry D. Curtin, Neil G. McIlvaine, Peter Nazaroff, Zack Pahlman, Jeremy Wong, Christian Schneider