Patents by Inventor Barry D. Curtin

Barry D. Curtin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9457197
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 4, 2016
    Assignee: Physio-Control, Inc.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Publication number: 20160250491
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: May 11, 2016
    Publication date: September 1, 2016
    Inventors: David Dean Aoyama, Matthew Lawrence Bielstein, Barry D. Curtin, Kevin C. Drew, Mina Lim, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Publication number: 20160175602
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: March 1, 2016
    Publication date: June 23, 2016
    Inventors: David Dean Aoyama, Matthew Lawrence Bielstein, Barry D. Curtin, Kevin C. Drew, Mina Lim, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Patent number: 9289621
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: March 22, 2016
    Assignee: Physio-Control, Inc.
    Inventors: David Dean Aoyama, Matthew Lawrence Bielstein, Barry D. Curtin, Kevin C. Drew, Mina Lim, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Publication number: 20150359964
    Abstract: A portable medical device having an intravenous line flow sensor integrated into a cable. The portable medical device may be a defibrillator having an ECG or electrode cable couple to ECG or electrode leads. The flow sensor may be integrated into the ECG or electrode cable. The portable medical device uses the flow sensor to capture and store information about fluids delivered to a patient being treated with the portable medical device. The information may include total volume provided, flow rate, and the like. The information may then be used to evaluate the treatment provided to the patient.
    Type: Application
    Filed: June 12, 2015
    Publication date: December 17, 2015
    Inventors: Robert G. Walker, Barry D. Curtin
  • Publication number: 20130304145
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Publication number: 20130304142
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: Physio-Control, Inc.
    Inventors: Barry D. Curtin, John Daynes, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Publication number: 20130304146
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Publication number: 20130304147
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Matthew Lawrence Bielstein, Barry D. Curtin, Kevin C. Drew, Mina Lim, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Patent number: D724218
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 10, 2015
    Assignee: Physio-Control, Inc.
    Inventors: John Daynes, Mina Lim, Barry D Curtin, Karen Kraft Langman, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Patent number: D724219
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: March 10, 2015
    Assignee: Physio-Control, Inc.
    Inventors: John Daynes, Mina Lim, Barry D Curtin, Karen Kraft Langman, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith