Patents by Inventor Bayard K. Johnson

Bayard K. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10544517
    Abstract: The present invention relates to a method of growing a silicon ingot comprising a dopant material having a segregation coefficient of k, wherein the concentration of the dopant is axially substantially uniform throughout the ingot. The method comprises the steps of providing a crucible having an inner growth zone in fluid communication with an outer feed zone, and the inner growth zone and the outer feed zone have cross-sectional areas that are can be used to determine conditions for maintaining dopant uniformity for the specific dopant material used. A crystalline growth system for growing at least one uniformly doped silicon ingot is also disclosed.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: January 28, 2020
    Assignee: GTAT IP HOLDING LLC.
    Inventor: Bayard K. Johnson
  • Publication number: 20190203378
    Abstract: Methods for removing a melt of silicon from a crucible used in a silicon ingot growth process and associated wick assemblies are disclosed. The wick is made of porous carbon that ignites upon reaching an ignition temperature causing relatively rapid and relatively large volume take-up of silicon from the crucible.
    Type: Application
    Filed: December 18, 2018
    Publication date: July 4, 2019
    Inventors: Bayard K. Johnson, Henry Frank Erk, Steven Lee Garner, John Gibbons, Anthony Thomas Berhorst, Joseph C. Holzer, Benjamin Michael Meyer, Parthiv Daggolu, Arash Mehdizadeh Dehkordi, Shawn Wesley Hayes
  • Patent number: 10202705
    Abstract: A Czochralski growth system is disclosed comprising a crucible, a silicon delivery system comprising a feeder having a delivery point overhanging the crucible and delivering a controllable amount of silicon into the crucible, and at least one doping mechanism controllably delivering at least one dopant material to the feeder. The system can comprise two or more doping mechanisms each loaded with a different dopant material and can therefore be used to prepare silicon ingots having multiple dopants. The resulting ingots have substantially constant dopant concentrations along their axes. Also disclosed is a method of Czochralski growth of at least one silicon ingot comprising at least one dopant material, which is preferably a continuous Czochralski method.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: February 12, 2019
    Assignee: GTAT IP HOLDING LLC
    Inventors: Bayard K. Johnson, John P. Deluca, William L. Luter
  • Patent number: 9051659
    Abstract: A doped silicon single crystal having a resistivity variation along a longitudinal and/or radial axis of less than 10% and a method of preparing one or a sequential series of doped silicon crystals is disclosed. The method includes providing a melt material comprising silicon into a continuous Czochralski crystal growth apparatus, delivering a dopant, such as gallium, indium, or aluminum, to the melt material, providing a seed crystal into the melt material when the melt material is in molten form, and growing a doped silicon single crystal by withdrawing the seed crystal from the melt material. Additional melt material is provided to the apparatus during the growing step. A doping model for calculating the amount of dopant to be delivered into the melt material during one or more doping events, methods for delivering the dopant, and vessels and containers used to deliver the dopant are also disclosed.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: June 9, 2015
    Assignee: GTAT IP HOLDING
    Inventors: John P. DeLuca, Frank S. Delk, II, Bayard K. Johnson, William L. Luter, Neil D. Middendorf, Dick S. Williams, Nels Patrick Ostrom, James N. Highfill
  • Publication number: 20120301386
    Abstract: A Czochralski growth system is disclosed comprising a crucible, a silicon delivery system comprising a feeder having a delivery point overhanging the crucible and delivering a controllable amount of silicon into the crucible, and at least one doping mechanism controllably delivering at least one dopant material to the feeder. The system can comprise two or more doping mechanisms each loaded with a different dopant material and can therefore be used to prepare silicon ingots having multiple dopants. The resulting ingots have substantially constant dopant concentrations along their axes. Also disclosed is a method of Czochralski growth of at least one silicon ingot comprising at least one dopant material, which is preferably a continuous Czochralski method.
    Type: Application
    Filed: April 13, 2012
    Publication date: November 29, 2012
    Applicant: GT Advanced CZ, LLC
    Inventors: Bayard K. Johnson, John P. DeLuca, William L. Luter
  • Publication number: 20120279437
    Abstract: The present invention relates to a method of growing a silicon ingot comprising a dopant material having a segregation coefficient of k, wherein the concentration of the dopant is axially substantially uniform throughout the ingot. The method comprises the steps of providing a crucible having an inner growth zone in fluid communication with an outer feed zone, and the inner growth zone and the outer feed zone have cross-sectional areas that are can be used to determine conditions for maintaining dopant uniformity for the specific dopant material used. A crystalline growth system for growing at least one uniformly doped silicon ingot is also disclosed.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 8, 2012
    Applicant: GT Advanced CZ, LLC
    Inventor: Bayard K. Johnson
  • Publication number: 20120056135
    Abstract: A doped silicon single crystal having a resistivity variation along a longitudinal and/or radial axis of less than 10% and a method of preparing one or a sequential series of doped silicon crystals is disclosed. The method includes providing a melt material comprising silicon into a continuous Czochralski crystal growth apparatus, delivering a dopant, such as gallium, indium, or aluminum, to the melt material, providing a seed crystal into the melt material when the melt material is in molten form, and growing a doped silicon single crystal by withdrawing the seed crystal from the melt material. Additional melt material is provided to the apparatus during the growing step. A doping model for calculating the amount of dopant to be delivered into the melt material during one or more doping events, methods for delivering the dopant, and vessels and containers used to deliver the dopant are also disclosed.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 8, 2012
    Inventors: John P. DeLuca, Frank S. Delk, II, Bayard K. Johnson, William L. Luter, Neil D. Middendorf, Dick S. Williams, Nels Patrick Ostrom, James N. Highfill
  • Patent number: 7442253
    Abstract: The present invention is directed to a process for producing a silicon wafer which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, may form an ideal, non-uniform depth distribution of oxygen precipitates and may additionally contain an axially symmetric region which is substantially free of agglomerated intrinsic point defects. The process either comprises exposing the wafer's front and back surfaces to different atmospheres, or thermally annealing two wafers in a face-to-face arrangement.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: October 28, 2008
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 7229693
    Abstract: The present invention is directed to a silicon wafer which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, may form an ideal, non-uniform depth distribution of oxygen precipitates and may additionally contain an axially symmetric region which is substantially free of agglomerated intrinsic point defects.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: June 12, 2007
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6896728
    Abstract: The present invention is directed to a process for producing a silicon wafer which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, may form an ideal, non-uniform depth distribution of oxygen precipitates and may additionally contain an axially symmetric region which is substantially free of agglomerated intrinsic point defects. The process including growing a single crystal silicon ingot from molten silicon, and as part of the growth process, controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and (iii) a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: May 24, 2005
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6840997
    Abstract: The present invention relates to a process for growing a single crystal silicon. The process including controlling a growth velocity, v, and an average axial temperature gradient, G0, during the growth of the constant diameter portion of the crystal over the temperature range from solidification to a temperature of no less than about 1325° C., to cause the formation of a first axially symmetrical region in which vacancies, upon cooling of the ingot from the solidification temperature, are the predominant intrinsic point defect and which is substantially free of agglomerated intrinsic point defects, wherein the first axially symmetric region has a width of at least about 50% of the radius of the constant diameter portion of the ingot.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: January 11, 2005
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Publication number: 20040089224
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region which is free of agglomerated intrinsic point defects, and a process for the preparation thereof.
    Type: Application
    Filed: October 14, 2003
    Publication date: May 13, 2004
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Publication number: 20040025782
    Abstract: The present invention is directed to a process for producing a silicon wafer which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, may form an ideal, non-uniform depth distribution of oxygen precipitates and may additionally contain an axially symmetric region which is substantially free of agglomerated intrinsic point defects. The process including growing a single crystal silicon ingot from molten silicon, and as part of the growth process, controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and (iii) a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects.
    Type: Application
    Filed: February 25, 2003
    Publication date: February 12, 2004
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Publication number: 20030196587
    Abstract: The present invention relates to a process for growing a single crystal silicon ingot, which contains an axially symmetric region having a predominant intrinsic point defect and which is substantially free of agglomerated intrinsic point defects in that region. The process comprising cooling the ingot from the temperature of solidification to a temperature of less than 800° C. and, as part of said cooling step, quench cooling a region of the constant diameter portion of the ingot having a predominant intrinsic point defect through the temperature of nucleation for the agglomerated intrinsic point defects for the intrinsic point defects which predominate in the region.
    Type: Application
    Filed: May 6, 2003
    Publication date: October 23, 2003
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Kirk D. McCallum, W. Brock Alexander, Mohsen Banan, Robert J. Falster, Joseph C. Holzer, Bayard K. Johnson, Chang Bum Kim, Steven L. Kimbel, Zheng Lu, Paolo Mutti, Vladimir V. Voronkov, Luciano Mule'Stagno, Jeffrey L. Libbert
  • Patent number: 6632278
    Abstract: The present invention relates to an epitaxial wafer comprising single crystal silicon substrate and an epitaxial layer deposited thereon. The substrate comprises an axially symmetric region which is free of agglomerated intrinsic point defects and wherein silicon self-interstitials are the predominant intrinsic point defect in the axially symmetric region. The present invention further relates to a process for producing such an epitaxial wafer.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: October 14, 2003
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6555194
    Abstract: The present invention is directed to a process for producing a silicon wafer which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, may form an ideal, non-uniform depth distribution of oxygen precipitates and may additionally contain an axially symmetric region which is substantially free of agglomerated intrinsic point defects. The process including growing a single crystal silicon ingot from molten silicon, and as part of the growth process, controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and (iii) a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: April 29, 2003
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Publication number: 20030051657
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region in which vacancies are the predominant intrinsic point defect and which is substantially free of agglomerated vacancy intrinsic point defects, wherein the first axially symmetric region has a width which is at least about 50% of the length of the radius of the ingot, and a process for the preparation thereof.
    Type: Application
    Filed: July 3, 2002
    Publication date: March 20, 2003
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Publication number: 20020170485
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region which is free of agglomerated intrinsic point defects, and a process for the preparation thereof. The process for growing the single crystal silicon ingot comprises controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and (iii) a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects.
    Type: Application
    Filed: April 30, 2002
    Publication date: November 21, 2002
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Publication number: 20020078880
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region in which vacancies are the predominant intrinsic point defect and which is substantially free of agglomerated vacancy intrinsic point defects, wherein the first axially symmetric region has a width which is at least about 50% of the length of the radius of the ingot, and a process for the preparation thereof.
    Type: Application
    Filed: October 24, 2001
    Publication date: June 27, 2002
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6409826
    Abstract: The present invention relates a process for the preparation of single crystal silicon, which contains an axially symmetric region which is free of agglomerated intrinsic point defects. The process for growing the single crystal silicon including controlling the ratio v/G0, where v is the growth velocity and G0 is the average axial temperature gradient during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects. The control of V/G0 accomplished by controlling heat transfer at the melt/solid interface.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: June 25, 2002
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson