Patents by Inventor Bayard K. Johnson

Bayard K. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6379642
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region in which vacancies are the predominant intrinsic point defect and which is substantially free of agglomerated vacancy intrinsic point defects, wherein the first axially symmetric region has a width which is at least about 50% of the length of the radius of the ingot, and a process for the preparation thereof.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: April 30, 2002
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6315828
    Abstract: A continuous oxidation process and apparatus for using the same are disclosed. During growth of a semiconductor crystal an oxygen-containing gas is continuously injected into the crystal pulling apparatus in an exhaust tunnel downstream from the hot zone to continuously oxidize hypostoichiometric silicon dioxide, silicon vapor, and silicon monoxide produced in the hot zone during the crystal growth so as to minimize or eliminate the possibility of rapid over-pressurization of the apparatus upon exposure to the atmosphere.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: November 13, 2001
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: John D. Holder, Bayard K. Johnson
  • Publication number: 20010025597
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region which is free of agglomerated intrinsic point defects, and a process for the preparation thereof. The process for growing the single crystal silicon ingot comprises controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and (iii) a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects.
    Type: Application
    Filed: March 23, 2001
    Publication date: October 4, 2001
    Inventors: Robert J. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6254672
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region which is free of agglomerated intrinsic point defects, and a process for the preparation thereof. The process for growing the single crystal silicon ingot comprises controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and (iii) a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects.
    Type: Grant
    Filed: April 9, 1998
    Date of Patent: July 3, 2001
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6190631
    Abstract: A single crystal silicon wafer which, during the heat treatment cycles of essentially any electronic device manufacturing process, will form an ideal, non-uniform depth distribution of oxygen precipitates. The wafer is characterized in that is has a non-uniform distribution of crystal lattice vacancies, the concentration of vacancies in the bulk layer being greater than the concentration of vacancies in the surface layer and the vacancies having a concentration profile in which the peak density of the vacancies is at or near a central plane with the concentration generally decreasing from the position of peak density in the direction of a front surface of the wafer. In one embodiment, the wafer is further characterized in that it has a first axially symmetric region in which vacancies are the predominant intrinsic point defect and which is substantially free of agglomerated intrinsic point defects, wherein the first axially symmetric region comprises a central axis or has a width of at least about 15 mm.
    Type: Grant
    Filed: April 9, 1998
    Date of Patent: February 20, 2001
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6039801
    Abstract: A continuous oxidation process and apparatus for using the same are disclosed. During growth of a semiconductor crystal an oxygen-containing gas is continuously injected into the crystal pulling apparatus in an exhaust tunnel downstream from the hot zone to continuously oxidize hypostoichiometric silicon dioxide, silicon vapor, and silicon monoxide produced in the hot zone during the crystal growth so as to minimize or eliminate the possibility of rapid over-pressurization of the apparatus upon exposure to the atmosphere.
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: March 21, 2000
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: John D. Holder, Bayard K. Johnson
  • Patent number: 5919302
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region in which vacancies are the predominant intrinsic point defect and which is substantially free of agglomerated vacancy intrinsic point defects, wherein the first axially symmetric region comprises the central axis or has a width of at least about 15 mm, and a process for the preparation thereof.
    Type: Grant
    Filed: April 9, 1998
    Date of Patent: July 6, 1999
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson