Patents by Inventor Beate Böhme

Beate Böhme has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9857578
    Abstract: A laser scanning microscope for the acquisition of object images according to varied observation criteria. The microscope includes an illumination and detection unit, an illumination and a detection beam, a microscope objective, a scanning device with a scanning optical component and several scanners, with switching mirrors, each mirror with two switching positions, provided in the illumination and detection beams. Each switching position is assigned to one of several different, optically separate beam paths and each beam path defines a separate operating mode. A concave mirror for imaging a first scanner into at least one more scanner and vice versa is arranged in at least one of the beam paths.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: January 2, 2018
    Assignees: Carl Zeiss Microscopy GmbH, Carl Zeiss AG
    Inventors: Beate Boehme, Matthias Wald, Tiemo Anhut, Daniel Schwedt
  • Publication number: 20170315339
    Abstract: Beam deflection units in light-scanning microscopes are usually arranged in planes that are conjugate to the objective pupil. The scan optics, which is required for generating the conjugate pupil planes, is complicated and not very light efficient. The invention is intended to enable a higher image quality, simpler adjustment and a lower light loss microscope. The optical system comprises a concave mirror (36) for imaging a respective point of the first and second beam deflection units (30A, 30B) onto one another. The concave mirror (36), the first beam deflection unit (30A), and the second beam deflection unit (30B) are arranged such that the illumination beam path is reflected exactly once at the concave mirror (36). A first distortion caused by the concave mirror (36) and a second distortion of the imaging caused by the first and second beam deflection units (30A, 30B) at least partly compensate for one another.
    Type: Application
    Filed: November 11, 2015
    Publication date: November 2, 2017
    Inventors: Daniel Schwedt, Tiemo Anhut, Matthias Wald, Beate Böhme, Tobias Kaufhold
  • Publication number: 20170219809
    Abstract: A light-scanning microscope including a scan optics for generating a pupil plane conjugate to the pupil plane of the microscope objective, and a variably adjustable beam deflection unit in the conjugate pupil plane. An intermediate image lies between the microscope objective and the scan optics. The scan optics image a second intermediate image (Zb2) into the first intermediate image via the beam deflection unit, wherein the second intermediate image is spatially curved. The deflection unit is not arranged in a collimated section of the beam path, but is instead arranged in a convergent section. Then, in terms of the optical properties and quality thereof, the scan optics needs rather to correspond merely to an eyepiece instead of a conventional scanner objective.
    Type: Application
    Filed: April 16, 2015
    Publication date: August 3, 2017
    Applicants: Carl Zeiss Microscopy GmbH, Carl Zeiss AG
    Inventors: Matthias Wald, Beate Böhme, Daniel Schwedt, Tiemo Anhut
  • Publication number: 20160157994
    Abstract: An eye lens includes an optical part, which defines a first optical surface. The first optical surface is configured as turn with a pitch extending circumferentially about a principal axis (A) of the eye lens. A transition region is formed between a beginning and an end of the turn, which with a beginning edge and an end edge merges into the turn. The beginning edge extends between the principal axis (A) and a first circumferential location and the end edge extends between the principal axis (A) and a second circumferential location. The beginning edge projected into a plane (H) perpendicular to the principal axis (A) has a non-linear course and/or the end edge projected into a plane (H) perpendicular to the principal axis (A) has a non-linear course.
    Type: Application
    Filed: February 16, 2016
    Publication date: June 9, 2016
    Inventors: Mario Gerlach, Beate Boehme, Hans-Juergen Dobschal
  • Publication number: 20160131881
    Abstract: A laser scanning microscope for the acquisition of object images according to varied observation criteria. The microscope includes an illumination and detection unit, an illumination and a detection beam, a microscope objective, a scanning device with a scanning optical component and several scanners, with switching mirrors, each mirror with two switching positions, provided in the illumination and detection beams. Each switching position is assigned to one of several different, optically separate beam paths and each beam path defines a separate operating mode. A concave mirror for imaging a first scanner into at least one more scanner and vice versa is arranged in at least one of the beam paths.
    Type: Application
    Filed: November 5, 2015
    Publication date: May 12, 2016
    Applicant: CARL ZEISS MICROSCOPY GMBH
    Inventors: Beate Boehme, Matthias Wald, Tiemo Anhut, Daniel Schwedt
  • Patent number: 7961297
    Abstract: A method for determining intensity distribution in the focal plane of a projection exposure arrangement, in which a large aperture imaging system is emulated and a light from a sample is represented on a local resolution detector by an emulation imaging system. A device for carrying out the method and emulated devices are also described. The invention makes it possible to improve a reproduction quality since the system apodisation is taken into consideration. The inventive method includes determining the integrated amplitude distribution in an output pupil, combining the integrated amplitude distribution with a predetermined apodization correction and calculating a corrected apodization image according to the modified amplitude distribution.
    Type: Grant
    Filed: September 2, 2006
    Date of Patent: June 14, 2011
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Joern Greif-Wuestenbecker, Beate Boehme, Ulrich Stroessner, Michael Totzeck, Vladimir Kamenov, Olaf Dittmann, Daniel Kraehmer, Toralf Gruner, Bernd Geh
  • Publication number: 20080212060
    Abstract: A method for determining intensity distribution in the focal plane of a projection exposure arrangement, in which a large aperture imaging system is emulated and a light from a sample is represented on a local resolution detector by an emulation imaging system. A device for carrying out the method and emulated devices are also described. The invention makes it possible to improve a reproduction quality since the system apodisation is taken into consideration. The inventive method consists in includes determining the integrated amplitude distribution in an output pupil, combining the integrated amplitude distribution with a predetermined apodization correction and calculating a corrected apodization image according to the modified amplitude distribution.
    Type: Application
    Filed: September 2, 2006
    Publication date: September 4, 2008
    Applicant: CARL ZEISS SMS GMBH
    Inventors: Joern Greif-Wuestenbecker, Beate Boehme, Ulrich Stroessner, Michael Totzeck, Vladimir Kamenov, Olaf Dittmann, Daniel Kraehmer, Toralf Gruner, Bernd Geh