Patents by Inventor Befruz Tasbas

Befruz Tasbas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180240740
    Abstract: A semiconductor package includes a leadframe having perimeter package leads and electrical connectors, a single semiconductor die having a back-side electrical contact and front-side electrical contacts, an electrically conductive clip (“clip”), and a top semiconductor die having a frontside and a backside. The single semiconductor die includes two or more transistors. Two or more of the front-side electrical contacts of the semiconductor die are electrically coupled to and physically mounted to respective electrical contacts of the leadframe. An electrical contact surface of the clip is electrically coupled to and physically mounted to an electrical connector of the leadframe. Another electrical contact surface of the clip is physically mounted to and electrically coupled to the back-side electrical contact of the semiconductor die. The backside of the top semiconductor die is physically mounted to yet another surface of the electrically conductive clip.
    Type: Application
    Filed: August 17, 2017
    Publication date: August 23, 2018
    Applicant: Silanna Asia Pte Ltd
    Inventors: Shanghui Larry Tu, Michael A. Stuber, Befruz Tasbas, Stuart B. Molin, Raymond Jiang
  • Publication number: 20180240876
    Abstract: In an active layer over a semiconductor substrate, a semiconductor device has a first lateral diffusion field effect transistor (LDFET) that includes a source, a drain, and a gate, and a second LDFET that includes a source, a drain, and a gate. The source of the first LDFET and the drain of the second LDFET are electrically connected to a common node. A first front-side contact and a second front-side contact are formed over the active layer, and a substrate contact electrically connected to the semiconductor substrate is formed. Each of the first front-side contact, the second front-side contact, and the substrate contact is electrically connected to a different respective one of the drain of the first LDFET, the source of the second LDFET, and the common node.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 23, 2018
    Applicant: Silanna Asia Pte Ltd
    Inventors: Shanghui Larry Tu, Michael A. Stuber, Befruz Tasbas, Stuart B. Molin, Raymond Jiang
  • Publication number: 20180240904
    Abstract: A semiconductor package includes a leadframe, having perimeter package leads and a ground voltage lead, a bottom semiconductor die flip-chip mounted to the leadframe, and a top semiconductor die. The bottom semiconductor die has a first frontside active layer with first frontside electrical contacts electrically connected to the leadframe, a first backside portion, and a buried oxide layer situated between the first frontside active layer and the first backside portion. The top semiconductor die is mounted to the first backside portion. The first frontside active layer includes a circuit electrically connected to the first backside portion by a backside electrical connection through the buried oxide layer. The first backside portion of the bottom semiconductor die is electrically connected to the ground voltage lead through a first electrical contact of the first frontside electrical contacts to minimize crosstalk.
    Type: Application
    Filed: December 22, 2017
    Publication date: August 23, 2018
    Applicant: Silanna Asia Pte Ltd
    Inventors: Shanghui Larry Tu, Michael A. Stuber, Befruz Tasbas, Stuart B. Molin, Raymond Jiang
  • Publication number: 20180158822
    Abstract: Systems, methods, and apparatus for an improved protection from charge injection into layers of a device using resistive structures are described. Such resistive structures, named s-contacts, can be made using simpler fabrication methods and less fabrication steps. In a case of metal-oxide-semiconductor (MOS) field effect transistors (FETs), s-contacts can be made with direct connection, or resistive connection, to all regions of the transistors, including the source region, the drain region and the gate.
    Type: Application
    Filed: November 28, 2017
    Publication date: June 7, 2018
    Inventors: Befruz Tasbas, Simon Edward Willard, Alain Duvallet, Sinan Goktepeli
  • Patent number: 9923059
    Abstract: In an active layer over a semiconductor substrate, a semiconductor device has a first lateral diffusion field effect transistor (LDFET) that includes a source, a drain, and a gate, and a second LDFET that includes a source, a drain, and a gate. The source of the first LDFET and the drain of the second LDFET are electrically connected to a common node. A first front-side contact and a second front-side contact are formed over the active layer, and a substrate contact electrically connected to the semiconductor substrate is formed. Each of the first front-side contact, the second front-side contact, and the substrate contact is electrically connected to a different respective one of the drain of the first LDFET, the source of the second LDFET, and the common node.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: March 20, 2018
    Assignee: Silanna Asia Pte Ltd
    Inventors: Shanghui Larry Tu, Michael A. Stuber, Befruz Tasbas, Stuart B. Molin, Raymond Jiang
  • Patent number: 9837412
    Abstract: Systems, methods, and apparatus for an improved protection from charge injection into layers of a device using resistive structures are described. Such resistive structures, named s-contacts, can be made using simpler fabrication methods and less fabrication steps. In a case of metal-oxide-semiconductor (MOS) field effect transistors (FETs), s-contacts can be made with direct connection, or resistive connection, to all regions of the transistors, including the source region, the drain region and the gate.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: December 5, 2017
    Assignee: Peregrine Semiconductor Corporation
    Inventors: Befruz Tasbas, Simon Edward Willard, Alain Duvallet, Sinan Goktepeli
  • Publication number: 20170338230
    Abstract: Systems, methods, and apparatus for an improved protection from charge injection into layers of a device using resistive structures are described. Such resistive structures, named s-contacts, can be made using simpler fabrication methods and less fabrication steps. In a case of metal-oxide-semiconductor (MOS) field effect transistors (FETs), s-contacts can be made with direct connection, or resistive connection, to all regions of the transistors, including the source region, the drain region and the gate.
    Type: Application
    Filed: April 14, 2017
    Publication date: November 23, 2017
    Inventors: Befruz Tasbas, Simon Edward Willard, Alain Duvallet, Sinan Goktepeli
  • Publication number: 20170170177
    Abstract: Systems, methods, and apparatus for an improved protection from charge injection into layers of a device using resistive structures are described. Such resistive structures, named s-contacts, can be made using simpler fabrication methods and less fabrication steps. In a case of metal-oxide-semiconductor (MOS) field effect transistors (FETs), s-contacts can be made with direct connection, or resistive connection, to all regions of the transistors, including the source region, the drain region and the gate.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 15, 2017
    Inventors: Befruz Tasbas, Simon Edward Willard, Alain Duvallet, Sinan Goktepeli