Patents by Inventor Belinda Hannon

Belinda Hannon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140264386
    Abstract: A semiconductor device includes a first transistor having first drain and source regions and a first channel region and a second transistor having second drain and source regions and a second channel region. A first silicon/carbon alloy material is embedded in the first drain and source regions, the first silicon/carbon alloy material inducing a first strain component along a first channel length direction of the first channel region. A second silicon/carbon alloy material is embedded in the second drain and source regions, the second silicon/carbon alloy material inducing a second strain component along a second channel length direction of the second channel region, wherein the second strain component is of an opposite type of the first strain component.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES Inc,
    Inventors: Jan Hoentschel, Vassilios Papageorgiou, Belinda Hannon
  • Patent number: 8772878
    Abstract: A silicon/germanium material and a silicon/carbon material may be provided in transistors of different conductivity type on the basis of an appropriate manufacturing regime without unduly contributing to overall process complexity. Furthermore, appropriate implantation species may be provided through exposed surface areas of the cavities prior to forming the corresponding strained semiconductor alloy, thereby additionally contributing to enhanced overall transistor performance. In other embodiments a silicon/carbon material may be formed in a P-channel transistor and an N-channel transistor, while the corresponding tensile strain component may be overcompensated for by means of a stress memorization technique in the P-channel transistor. Thus, the advantageous effects of the carbon species, such as enhancing overall dopant profile of P-channel transistors, may be combined with an efficient strain component while enhanced overall process uniformity may also be accomplished.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: July 8, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jan Hoentschel, Vassilios Papageorgiou, Belinda Hannon
  • Publication number: 20120129308
    Abstract: A silicon/germanium material and a silicon/carbon material may be provided in transistors of different conductivity type on the basis of an appropriate manufacturing regime without unduly contributing to overall process complexity. Furthermore, appropriate implantation species may be provided through exposed surface areas of the cavities prior to forming the corresponding strained semiconductor alloy, thereby additionally contributing to enhanced overall transistor performance. In other embodiments a silicon/carbon material may be formed in a P-channel transistor and an N-channel transistor, while the corresponding tensile strain component may be overcompensated for by means of a stress memorization technique in the P-channel transistor. Thus, the advantageous effects of the carbon species, such as enhancing overall dopant profile of P-channel transistors, may be combined with an efficient strain component while enhanced overall process uniformity may also be accomplished.
    Type: Application
    Filed: January 31, 2012
    Publication date: May 24, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Jan Hoentschel, Vassilios Papageorgiou, Belinda Hannon
  • Patent number: 8154084
    Abstract: A silicon/germanium material and a silicon/carbon material may be provided in transistors of different conductivity type on the basis of an appropriate manufacturing regime without unduly contributing to overall process complexity. Furthermore, appropriate implantation species may be provided through exposed surface areas of the cavities prior to forming the corresponding strained semiconductor alloy, thereby additionally contributing to enhanced overall transistor performance. In other embodiments a silicon/carbon material may be formed in a P-channel transistor and an N-channel transistor, while the corresponding tensile strain component may be overcompensated for by means of a stress memorization technique in the P-channel transistor. Thus, the advantageous effects of the carbon species, such as enhancing overall dopant profile of P-channel transistors, may be combined with an efficient strain component while enhanced overall process uniformity may also be accomplished.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: April 10, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jan Hoentschel, Vassilios Papageorgiou, Belinda Hannon
  • Publication number: 20100025771
    Abstract: A silicon/germanium material and a silicon/carbon material may be provided in transistors of different conductivity type on the basis of an appropriate manufacturing regime without unduly contributing to overall process complexity. Furthermore, appropriate implantation species may be provided through exposed surface areas of the cavities prior to forming the corresponding strained semiconductor alloy, thereby additionally contributing to enhanced overall transistor performance. In other embodiments a silicon/carbon material may be formed in a P-channel transistor and an N-channel transistor, while the corresponding tensile strain component may be overcompensated for by means of a stress memorization technique in the P-channel transistor. Thus, the advantageous effects of the carbon species, such as enhancing overall dopant profile of P-channel transistors, may be combined with an efficient strain component while enhanced overall process uniformity may also be accomplished.
    Type: Application
    Filed: May 28, 2009
    Publication date: February 4, 2010
    Inventors: Jan Hoentschel, Vassilios Papageorgiou, Belinda Hannon