Patents by Inventor Ben Covington
Ben Covington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11922348Abstract: A multi-model medical scan analysis system is operable to generate a plurality of training sets from a plurality of medical scans. Each of a set of sub-models is generated by performing a training step on a corresponding one of the plurality of training sets of the plurality of medical scans. A set of abnormality data is generated by applying a subset of a set of inference functions on a new medical scan. The subset of the set of inference functions utilize the subset of the set of sub-models, and each of the set of abnormality data is generated as output of performing one of the subset of the set of inference functions. The multi-model medical scan analysis system is further operable to generate final abnormality data that includes a global probability indicating a probability that any abnormality is present based on the set of abnormality data.Type: GrantFiled: March 29, 2022Date of Patent: March 5, 2024Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
-
Patent number: 11829914Abstract: A medical scan header standardization system is operable to determine a plurality of counts for a plurality of entries of at least one of a standard set of fields for headers of a plurality of medical images. A standard set of header entries is determined for at least one of the standard set of fields based on including ones of the entries for the each of the standard set of fields with counts of the plurality of counts that compare favorably to a threshold. One of the standard set of header entries is selected to replace an entry of a field of a header of a medical image. A computer vision model is trained utilizing a training set of images that includes the medical image and the selected one of the standard set of header entries. Inference data for at least one new medical scan is generated based on utilizing the computer vision model.Type: GrantFiled: February 25, 2022Date of Patent: November 28, 2023Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Anthony Upton, Li Yao, Jordan Prosky, Eric C. Poblenz, Chris Croswhite, Ben Covington
-
Patent number: 11823106Abstract: A location-based medical scan analysis system is operable to generate a generic model by performing a training step on image data of a plurality of medical scans. Location-based subsets of the plurality of medical scans are generated by including ones of the plurality of medical scans with originating locations that compare favorably to location grouping criteria for the each location-based subset. A plurality of location-based models are generated by performing a fine-tuning step on the generic model, utilizing a corresponding one of the plurality of location-based subsets. Inference data is generated for a new medical scan by utilizing one of the location-based models on the new medical scan, where an originating location associated with the new medical scan compares favorably to location grouping criteria for the location-based subset utilized to generate the location-based model. The inference data is transmitted to a client device for display via a display device.Type: GrantFiled: March 27, 2019Date of Patent: November 21, 2023Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
-
Patent number: 11810037Abstract: An automatic patient recruitment system is operable generate abnormality data for medical scans by performing at least one inference function on image data of each medical scans by utilizing a computer vision model trained on a training set of medical scans. A subset of a plurality of patients is identified to be eligible for a pharmaceutical study by identifying medical scans having abnormality data that compares favorably to abnormality criteria of the pharmaceutical study. A size of the subset is compared to a minimum participant count requirement. A notification indicating the subset of the plurality of patients is transmitted based on the size of the subset comparing favorably to the minimum participant count requirement.Type: GrantFiled: September 17, 2021Date of Patent: November 7, 2023Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Anthony Upton, Li Yao, Ben Covington, Keith Lui
-
Patent number: 11790297Abstract: A model-assisted annotating system is operable to receive a first set of annotation data, corresponding to a broad type of annotation data output. A first training step is performed to train a computer vision model using the first set of annotation data. A second set of annotation data corresponding to the broad type of annotation data output is generated performing an inference function utilizing the computer vision model on medical scans. Additional annotation data further specifies the broad type of annotation data output is received. A second training step is performed to generate an updated computer vision model using set of additional annotation data. A third set of annotation data corresponding to the specified type of annotation data output is generated by performing an updated inference function utilizing the updated computer vision model on medical scans.Type: GrantFiled: January 11, 2022Date of Patent: October 17, 2023Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton, Lionel Lints
-
Patent number: 11748677Abstract: A multi-model medical scan analysis system is operable to generate a generic model by performing a training step on image data of a plurality of medical scans and corresponding labeling data. A plurality of fine-tuned models are generated by performing a fine-tuning step on the generic model. Abnormality detection data is generated for a new medical scan by utilizing the generic model. A first one of the plurality of abnormality types that is detected in the new medical scan is determined based on a corresponding one of the plurality of probability values. Additional abnormality data is generated by performing a fine-tuned inference function on the image data of the new medical scan that utilizes one of the plurality of fine-tuned models that corresponds to the first one of the plurality of abnormality types. The additional abnormality data is transmitted for display.Type: GrantFiled: August 4, 2021Date of Patent: September 5, 2023Assignee: Enlitic, Inc.Inventors: Jordan Prosky, Li Yao, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
-
Patent number: 11734629Abstract: A medical scan system is operable to receive a set of labeling data corresponding to a set of medical scans from each of a set of client devices corresponding to a set of users. The set of medical scans and each set of labeling data is transmitted to an expert client device associated with an expert user, and a set of golden labeling data and a plurality of sets of correction data are received from the expert client device. A set of performance score data is generated based on the plurality of sets of correction data, and each performance score data of the set of performance score data is assigned to a corresponding one of the set of users. An updated training set that includes the set of golden labeling data is generated, and a medical scan analysis function is retrained based on the updated training set.Type: GrantFiled: November 16, 2021Date of Patent: August 22, 2023Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Anthony Upton, Lionel Lints, Ben Covington, Alexander Rhodes
-
Re-training a model for abnormality detection in medical scans based on a re-contrasted training set
Patent number: 11694137Abstract: A method includes generating first contrast significance data for a first computer vision model generated from a first training set of medical scans. First significant contrast parameters are identified based on the first contrast significance data. A first re-contrasted training set is generated based on performing a first intensity transformation function on the first training set of medical scans, where the first intensity transformation function utilizes the first significant contrast parameters. A first re-trained model is generated from the first re-contrasted training set, which is associated with corresponding output labels based on abnormality data for the first training set of medical scans. Re-contrasted image data of a new medical scan is generated based on performing the first intensity transformation function. Inference data indicating at least one abnormality detected in the new medical scan is generated based on utilizing the first re-trained model on the re-contrasted image data.Type: GrantFiled: March 25, 2022Date of Patent: July 4, 2023Assignee: Enlitic, Inc.Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton -
Patent number: 11694136Abstract: A method includes generating a longitudinal lesion model by performing a training step on a plurality of sets of longitudinal data. Dates of medical scans of different ones of the plurality of sets of longitudinal data have relative time differences corresponding to different time spans, and each set of the plurality of sets of longitudinal data corresponds to one of a plurality of different patients. The longitudinal lesion model is utilized to perform an inference step on a received medical scan to generate, for a lesion detected in the received medical scan, a plurality of lesion change prediction data for a corresponding plurality of different projected time spans ending after the current date. At least one of the plurality of lesion change prediction data is transmitted for display.Type: GrantFiled: March 24, 2022Date of Patent: July 4, 2023Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Anthony Upton, Ben Covington, Li Yao, Keith Lui
-
Patent number: 11681962Abstract: A peer-review flagging system is operable to train a computer vision model and to generate automated assessment data by performing an inference function on a first medical scan by utilizing the computer vision model. Human assessment data is generated based on a first medical report written by a medical professional in conjunction with review of the first medical scan. First consensus data is generated based on the automated assessment data, the human assessment data, and a first threshold, and the first medical scan is determined to be flagged based on the first consensus data. A second threshold is selected use in generating second consensus data for a second medical scan and a second medical report written by the medical professional in conjunction with review of the second medical scan, and is selected to be stricter than the first threshold based on determining to flag the first medical scan.Type: GrantFiled: November 1, 2021Date of Patent: June 20, 2023Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Anthony Upton, Li Yao, Ben Covington
-
Patent number: 11669792Abstract: A medical scan triaging system is operable to train a computer vision model and to generate abnormality data indicating abnormality probabilities for medical scans via the computer vision model. A first subset of medical scans is determined by identifying medical scans with abnormality probabilities greater than a first probability value of a triage probability threshold. A second subset of medical scans is determined by identifying medical scans with abnormality probabilities less than the first probability value. An updated first subset of medical scans is determined by identifying medical scans with abnormality probabilities greater than a second probability value of an updated triage probability threshold. An updated second subset of the plurality of medical scans is determined by identifying medical scans with a abnormality probabilities less than the second probability value. The updated first subset of medical scans is transmitted to client devices.Type: GrantFiled: December 1, 2021Date of Patent: June 6, 2023Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
-
Patent number: 11669790Abstract: An intensity transform augmentation system is operable to generate a plurality of sets of augmented images by performing a set of intensity transformation functions on each of a training set of medical scans. Each of the set of intensity transformation functions are based on density properties of corresponding anatomy feature present in the training set of medical scans. A computer vision model is generated by performing a training step on the plurality of sets of augmented images, where each augmented image of a set of augmented images is assigned same output label data based on a corresponding one of the training set of medical scans. Inference data is generated by performing an inference function on a new medical scan by utilizing the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.Type: GrantFiled: June 2, 2021Date of Patent: June 6, 2023Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
-
Patent number: 11664114Abstract: A medical scan assisted review system is operable to receive, via a network, a medical scan for review. Abnormality data is generated by identifying a plurality of abnormalities in the medical scan by utilizing a computer vision model that is trained on a plurality of training medical scans. The abnormality data includes location data and classification data for each of the plurality of abnormalities. Text describing each of the plurality of abnormalities is generated based on the abnormality data. The abnormality data and the text is transmitted to a client device. A display device associated with the client device displays the abnormality data in conjunction with the medical scan via an interactive interface, and the display device further displays the text via the interactive interface.Type: GrantFiled: June 20, 2017Date of Patent: May 30, 2023Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Devon Bernard, Li Yao, Ben Covington, Anthony Upton
-
Patent number: 11631175Abstract: A multi-label heat map generating system is operable to receive a plurality of medical scans and a corresponding plurality of medical labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the medical labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Preliminary heat map visualization data can be generated for transmission to a client device based on the probability matrix data. Heat map visualization data can be generated via a post-processing of the preliminary heat map visualization data to mitigate heat map artifacts.Type: GrantFiled: February 8, 2022Date of Patent: April 18, 2023Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Eric C. Poblenz, Li Yao, Ben Covington, Anthony Upton
-
Patent number: 11626195Abstract: A method comprises displaying, via an interactive interface, a medical scan and a plurality of prompts of each prompt decision tree of a plurality of prompt decision trees in succession, beginning with automatically determined starting prompts of each prompt decision tree, in accordance with corresponding nodes of each prompt decision tree until a leaf node of each prompt decision tree is ultimately selected. Labeling data indicating the ultimately selected leaf node of each prompt decision tree is determined for the medical scan.Type: GrantFiled: September 15, 2021Date of Patent: April 11, 2023Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Anthony Upton, Lionel Lints, Ben Covington
-
Patent number: 11626194Abstract: An intensity transform augmentation system is operable to receive a training set of medical scans. Random intensity transformation function parameters are generated for each medical scan of the training set of medical scans. A plurality of augmented images are generated, where each of the plurality of augmented images is generated by performing a intensity transformation function on one of the training set of medical scans by utilizing the random intensity transform parameters generated for the one of the training set of medical scan. A computer vision model is generated by performing a training step on the plurality of augmented images. A new medical scan is received via the receiver. Inference data is generated by performing an inference function that utilizes the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.Type: GrantFiled: November 20, 2020Date of Patent: April 11, 2023Assignee: Enlitic, Inc.Inventors: Jordan Prosky, Li Yao, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
-
Patent number: 11551795Abstract: A multi-label heat map generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Heat map visualization data can be generated for transmission to a client device based on the probability matrix data that indicates, for each of the set of abnormality classes, a color value for each pixel of the new medical scan.Type: GrantFiled: February 8, 2022Date of Patent: January 10, 2023Assignee: Enlitic, Inc.Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman, Lionel Lints, Ben Covington, Anthony Upton
-
Patent number: 11462308Abstract: A triage routing system is operable to receive a medical scan via a receiver. Inference data for the medical scan is generated by performing an inference function, where the inference function utilizes a computer-vision model trained on a plurality of medical scans. One of a plurality of medical professionals is selected to review the medical scan based on the inference data. Triage routing data that indicates the medical scan and the one of the plurality of medical professionals is generated. The medical scan is transmitted to a client device associated with the one of the plurality of medical professionals for display via a display device in accordance with the triage routing data.Type: GrantFiled: December 2, 2020Date of Patent: October 4, 2022Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Anthony Upton, Li Yao, Ben Covington
-
Patent number: 11457871Abstract: A medical scan artifact detection system is operable to receive a medical scan of a patient. Artifact detection data is generated by executing an artifact detection function on the medical scan, where the artifact detection data indicates at least one artifact detected in the medical scan that includes a motion artifact or a nipple shadow. A notification is generated for display via a display device, where the notification indicates the at least one artifact.Type: GrantFiled: July 27, 2020Date of Patent: October 4, 2022Assignee: Enlitic, Inc.Inventors: Kevin Lyman, Ben Covington, Anthony Upton, David Di Domenico
-
Patent number: 11410760Abstract: A medical evaluation system operates by: receiving a set of medical scans of a medical scan protocol captured for a patient, the set of medical scans corresponding to a proper subset of a plurality of sequence types; generating abnormality data by performing an inference function on the set of medical scans, wherein the inference function utilizes a computer vision model trained on a plurality of medical scans corresponding to the proper subset of the plurality of sequence types; calculating a confidence score for the abnormality data; generating first additional sequence data, wherein when the confidence score compares unfavorably to a confidence score threshold, the first additional sequence data indicates at least one first additional medical scan of the patient, corresponding to a first at least one of the plurality of sequence types not included in the proper subset of the plurality of sequence types, and when the confidence score compares favorably to the confidence score threshold, the first additionalType: GrantFiled: November 19, 2020Date of Patent: August 9, 2022Inventors: Kevin Lyman, Anthony Upton, Ben Covington