Patents by Inventor Ben Covington

Ben Covington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200160122
    Abstract: A multi-label heat map display system is operable to receive a medical scan and a set of heat maps set of heat maps that each correspond to probability matrix data generated for each of a set of abnormality classes. An interactive interface that displays image data of the medical scan and at least one of the set of heat maps is generated for display on a display device associated with the multi-label heat map display system. User input to a client device is received, and an updated interactive interface that includes a change to the display of the at least one of the set of heat maps by the second portion of the interactive interface in response to the user input is displayed.
    Type: Application
    Filed: March 12, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Lionel Lints, Li Yao, Kevin Lyman, Chris Croswhite, Ben Covington, Anthony Upton
  • Publication number: 20200160945
    Abstract: A lesion tracking system is operable to receive a first medical scan and second medical scan associated with a patient ID. A lesion area calculation is performed on a first subset of image slices determined to include a lesion detected in the first medical to generate a first set of lesion area measurements. The lesion area calculation is performed on a second subset of image slices determined to include the lesion in the second medical scan to generate a second set of lesion area measurements. A lesion volume calculation is performed on the first set of lesion area measurements and the second set of lesion area measurements to generate a first lesion volume measurement and a second lesion volume measurement, respectively, and the first and second lesion volume measurements are utilized to calculate a lesion volume change for transmission to a client device for display via a display device.
    Type: Application
    Filed: March 14, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Ben Covington, Li Yao, Keith Lui
  • Publication number: 20200160954
    Abstract: A peer-review flagging system is operable to receive a medical scan and a medical report written by a medical professional in conjunction with review of the medical scan. Automated assessment data is generated by performing an inference function on the medical scan by utilizing a computer vision model trained on a plurality of medical scans. Human assessment data is generated by performing an extraction function on the medical report. Consensus data is generated by comparing the automated assessment data to the first human assessment data. A peer-review notification is transmitted to a client device for display. The peer-review notification indicates the medical scan is flagged for peer-review in response to determining the consensus data indicates the automated assessment data compares unfavorably to the human assessment data.
    Type: Application
    Filed: March 20, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Ben Covington
  • Publication number: 20200160983
    Abstract: A medical scan triaging system is operable to generate a global abnormality probability for each of a plurality of medical scans by utilizing a computer vision model trained on a training set of medical scans. A triage probability threshold is determined based on user input to a client device. A first subset of the plurality of medical scans, designated for human review, is determined by identifying medical scans with a corresponding global abnormality probability that compares favorably to the triage probability threshold. A second subset of the plurality of medical scans, designated as normal, is determined by identifying ones of the plurality of medical scans with a corresponding global abnormality probability that compares unfavorably to the triage probability threshold. Transmission of the first subset of the plurality of medical scans to a plurality of client devices associated with a plurality of users is facilitated.
    Type: Application
    Filed: March 27, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Publication number: 20200160942
    Abstract: An automatic patient recruitment system is operable to determine a set of eligibility criteria, which includes abnormality criteria and other patient criteria, for each of a plurality of pharmaceutical studies. Abnormality data is generated for received medical scans by performing at least one inference function on image data of each medical scans by utilizing a computer vision model trained on a training set of medical scans. One of a plurality of patients is identified to be eligible for a pharmaceutical study by determining a medical scan of the patient has abnormality data that compares favorably to the abnormality criteria of the pharmaceutical study and by determining that the patient has patient data that compares favorably to the other patient criteria of the pharmaceutical study. A notification indicating the identified patient is eligible for the pharmaceutical study is generated for transmission to a client device.
    Type: Application
    Filed: May 10, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Ben Covington, Keith Lui
  • Publication number: 20200160970
    Abstract: A medical scan header standardization system is operable to determine a set of standard DICOM headers based on determining a standard set of fields and based on further determining a standard set of entries for each of the standard set of fields. A DICOM image is received via a network, and a header of the DICOM image is determined to be incorrect. A selected one of the set of standard DICOM headers to replace the header of the DICOM image is determined. The selected one of the set of standard DICOM headers is transmitted, via the network, to a medical scan database for storage in conjunction with the DICOM image.
    Type: Application
    Filed: March 25, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Jordan Prosky, Eric C. Poblenz, Chris Croswhite, Ben Covington
  • Publication number: 20200160971
    Abstract: A multi-model medical scan analysis system is operable to generate a plurality of training sets from a plurality of medical scans. Each of a set of sub-models can be generated by performing a training step on a corresponding one of the plurality of training sets. A subset of the set of sub-models is selected for a new medical scan. A set of abnormality data is generated by applying a subset of a set of inference functions on the new medical scan, where the subset of the set of inference functions utilize the subset of the set of sub-models. Final abnormality data is generated by performing a final inference function on the set of abnormality data. The final abnormality data can be to a client device for display via a display device.
    Type: Application
    Filed: March 27, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Publication number: 20200160977
    Abstract: An intensity transform augmentation system is operable to generate a plurality of sets of augmented images by performing a set of intensity transformation functions on each of a training set of medical scans. Each of the set of intensity transformation functions are based on density properties of corresponding anatomy feature present in the training set of medical scans. A computer vision model is generated by performing a training step on the plurality of sets of augmented images, where each augmented image of a set of augmented images is assigned same output label data based on a corresponding one of the training set of medical scans. Inference data is generated by performing an inference function on a new medical scan by utilizing the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.
    Type: Application
    Filed: March 21, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Publication number: 20200160975
    Abstract: A multi-label heat map generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Heat map visualization data can be generated for transmission to a client device based on the probability matrix data that indicates, for each of the set of abnormality classes, a color value for each pixel of the new medical scan.
    Type: Application
    Filed: March 12, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman, Lionel Lints, Ben Covington, Anthony Upton
  • Publication number: 20200160966
    Abstract: A triage routing system is operable to receive a medical scan via a receiver. Inference data for the medical scan is generated by performing an inference function, where the inference function utilizes a computer-vision model trained on a plurality of medical scans. One of a plurality of medical professionals is selected to review the medical scan based on the inference data. Triage routing data that indicates the medical scan and the one of the plurality of medical professionals is generated. The medical scan is transmitted to a client device associated with the one of the plurality of medical professionals for display via a display device in accordance with the triage routing data.
    Type: Application
    Filed: March 18, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Ben Covington
  • Publication number: 20200160968
    Abstract: A medical scan labeling quality assurance system is operable to transmit a selected set of medical scans to a set of client devices associated with an expert user and a selected set of users. The client devices display medical scans are displayed to the expert user and the set of users, and a set of labeling data generated via user input to each client device is received from each client device. A set of performance score data is generated based on comparing each set of labeling data to a set of golden labeling data that was received from the client device of the expert user. The set of performance score data is used to update user profiles of the set of users, and is transmitted to the set of client devices for display to the set of users.
    Type: Application
    Filed: March 25, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Lionel Lints, Ben Covington, Alexander Rhodes
  • Publication number: 20200161005
    Abstract: A location-based medical scan analysis system is operable to generate a generic model by performing a training step on image data of a plurality of medical scans. Location-based subsets of the plurality of medical scans are generated by including ones of the plurality of medical scans with originating locations that compare favorably to location grouping criteria for the each location-based subset. A plurality of location-based models are generated by performing a fine-tuning step on the generic model, utilizing a corresponding one of the plurality of location-based subsets. Inference data is generated for a new medical scan by utilizing one of the location-based models on the new medical scan, where an originating location associated with the new medical scan compares favorably to location grouping criteria for the location-based subset utilized to generate the location-based model. The inference data is transmitted to a client device for display via a display device.
    Type: Application
    Filed: March 27, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Publication number: 20200160978
    Abstract: An intensity transform augmentation system is operable to receive a training set of medical scans. Random intensity transformation function parameters are generated for each medical scan of the training set of medical scans. A plurality of augmented images are generated, where each of the plurality of augmented images is generated by performing a intensity transformation function on one of the training set of medical scans by utilizing the random intensity transform parameters generated for the one of the training set of medical scan. A computer vision model is generated by performing a training step on the plurality of augmented images. A new medical scan is received via the receiver. Inference data is generated by performing an inference function that utilizes the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.
    Type: Application
    Filed: March 21, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Jordan Prosky, Li Yao, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
  • Publication number: 20200160520
    Abstract: A multi-model medical scan analysis system is operable to generate a generic model by performing a training step on image data of a plurality of medical scans and corresponding labeling data. A plurality of fine-tuned models corresponding to one of a plurality of abnormality types can be generated by performing a fine-tuning step on the generic model. Abnormality detection data can be generated for a new medical scan by performing utilizing the generic model. One of the plurality of abnormality types is determined to be detected in the new medical scan based on the abnormality detection data, and a fine-tuned model that corresponds to the abnormality type is selected. Additional abnormality data is generated for the new medical scan by utilizing the selected fine-tuned model. The additional abnormality data can be transmitted to a client device for display via a display device.
    Type: Application
    Filed: March 27, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Jordan Prosky, Li Yao, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
  • Publication number: 20200118670
    Abstract: A medical scan annotator system is operable to select a medical scan for transmission via a network to a first client device and a second client device for display via an interactive interface, and annotation data is received from the first client device and the second client device in response. Annotation similarity data is generated by comparing the first annotation data to the second annotation data, and consensus annotation data is generated based on the first annotation data and the second annotation data in response to the annotation similarity data indicating that the difference between the first annotation data and the second annotation data compares favorably to an annotation discrepancy threshold. The consensus annotation data is mapped to the medical scan in a medical scan database.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Applicant: Enlitic, Inc.
    Inventors: Devon Bernard, Kevin Lyman, Li Yao, Brian Basham, Ben Covington
  • Publication number: 20200111561
    Abstract: A lung screening assessment system is operable to receive a chest computed tomography (CT) scan that includes a plurality of cross sectional images. Nodule classification data of the chest CT scan is generated by utilizing a computer vision model that is trained on a plurality of training chest CT scans to identify a nodule in the plurality of cross sectional images and determine an assessment score. A lung screening report that includes the assessment score of the nodule classification data is generated for display on a display device associated with a user of the lung screening assessment system.
    Type: Application
    Filed: December 10, 2019
    Publication date: April 9, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Devon Bernard, Li Yao, Ben Covington, Diogo Almeida, Brian Basham, Jeremy Howard, Anthony Upton, John Zedlewski
  • Publication number: 20200111562
    Abstract: A chest x-ray differential diagnosis system is operable to generate abnormality pattern data is generated for each of a received plurality of chest x-rays by identifying at least one pattern in each chest x-ray corresponding to an abnormality by utilizing a computer vision model that is trained on a plurality of training chest x-rays. Differential diagnosis data is generated for each chest x-ray based on the abnormality pattern data. Filtering parameters are received from a client device, and a filtered chest x-ray queue that includes a subset of chest x-rays is selected based on the filtering parameters and the differential diagnosis data is generated for transmission to the client device for display. Differential diagnosis data corresponding a chest x-ray indicated in chest x-ray selection data received from the client device is transmitted to the client device for display via the display device in conjunction with the chest x-ray.
    Type: Application
    Filed: December 10, 2019
    Publication date: April 9, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Devon Bernard, Li Yao, Diogo Almeida, Ben Covington, Anthony Upton
  • Patent number: 10553312
    Abstract: A medical scan annotator system is operable to select a medical scan for transmission via a network to a first client device and a second client device for display via an interactive interface, and annotation data is received from the first client device and the second client device in response. Annotation similarity data is generated by comparing the first annotation data to the second annotation data, and consensus annotation data is generated based on the first annotation data and the second annotation data in response to the annotation similarity data indicating that the difference between the first annotation data and the second annotation data compares favorably to an annotation discrepancy threshold. The consensus annotation data is mapped to the medical scan in a medical scan database.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: February 4, 2020
    Assignee: Enlitic, Inc.
    Inventors: Devon Bernard, Kevin Lyman, Li Yao, Brian Basham, Ben Covington
  • Patent number: 10553311
    Abstract: A lung screening assessment system is operable to receive a chest computed tomography (CT) scan that includes a plurality of cross sectional images. Nodule classification data of the chest CT scan is generated by utilizing a computer vision model that is trained on a plurality of training chest CT scans to identify a nodule in the plurality of cross sectional images and determine an assessment score. A lung screening report that includes the assessment score of the nodule classification data is generated for display on a display device associated with a user of the lung screening assessment system.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: February 4, 2020
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Devon Bernard, Li Yao, Ben Covington, Diogo Almeida, Brian Basham, Jeremy Howard, Anthony Upton, John Zedlewski
  • Patent number: 10541050
    Abstract: A chest x-ray differential diagnosis system is operable to generate abnormality pattern data is generated for each of a received plurality of chest x-rays by identifying at least one pattern in each chest x-ray corresponding to an abnormality by utilizing a computer vision model that is trained on a plurality of training chest x-rays. Differential diagnosis data is generated for each chest x-ray based on the abnormality pattern data. Filtering parameters are received from a client device, and a filtered chest x-ray queue that includes a subset of chest x-rays is selected based on the filtering parameters and the differential diagnosis data is generated for transmission to the client device for display. Differential diagnosis data corresponding a chest x-ray indicated in chest x-ray selection data received from the client device is transmitted to the client device for display via the display device in conjunction with the chest x-ray.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: January 21, 2020
    Assignee: Enlitic, Inc.
    Inventors: Kevin Lyman, Devon Bernard, Li Yao, Diogo Almeida, Ben Covington, Anthony Upton