Patents by Inventor Ben Tompkins

Ben Tompkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10299947
    Abstract: A system for mechanically deploying intraluminal implants is disclosed. The system is used with an implant that is delivered and/or deployed via a pull wire and includes a handle having a funnel and receiving channel for receiving the pull wire, a slider having a thumb grip and a wedge, and a shuttle having a grabber for grasping the pull wire. The thumb grip is pulled proximally to retract the wedge to cause the grabber to grasp the wire and retract the shuttle but not the wire. An extension spring linked between the slider and the shuttle abruptly pulls the shuttle to retract the pull wire after the slider is fully retracted.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: May 28, 2019
    Assignee: Penumbra, Inc.
    Inventors: Eric Bennett, Erin Vitus, Matt Vargas, Arani Bose, Stephen Pons, Ben Tompkins, David Barry
  • Publication number: 20170367857
    Abstract: A system for mechanically deploying intraluminal implants is disclosed. The system is used with an implant that is delivered and/or deployed via a pull wire and includes a handle having a funnel and receiving channel for receiving the pull wire, a slider having a thumb grip and a wedge, and a shuttle having a grabber for grasping the pull wire. The thumb grip is pulled proximally to retract the wedge to cause the grabber to grasp the wire and retract the shuttle but not the wire. An extension spring linked between the slider and the shuttle abruptly pulls the shuttle to retract the pull wire after the slider is fully retracted.
    Type: Application
    Filed: March 6, 2017
    Publication date: December 28, 2017
    Applicant: Penumbra Inc.
    Inventors: Eric Bennett, Erin Vitus, Matt Vargas, Arani Bose, Stephen Pons, Ben Tompkins, David Barry
  • Publication number: 20170360450
    Abstract: Embolic coil implant systems and methods whereby coils are mechanically detachable are disclosed. The coils include a retention element that may be releasably retained within the distal end of an implant tool. The implant tool may include a fulcrum configured to engage a first filament and prevent the release of the coil when the first filament is engaged. Alternatively, an urging means and aperture may be disposed within the sidewall of the implant tool, and a first filament may, in conjunction with the aperture and sidewall, releasably retain the coil until the first filament is withdrawn. The implant tool may also include an alignment member for aligning the first filament.
    Type: Application
    Filed: August 30, 2017
    Publication date: December 21, 2017
    Applicant: Penumbra, Inc.
    Inventors: Ben Tompkins, Arani Bose, Delilah Hui, David Barry, Stephen Pons, Aleksander Leynov
  • Patent number: 9775621
    Abstract: Embolic coil implant systems and methods whereby coils are mechanically detachable are disclosed. The coils include a retention element that may be releasably retained within the distal end of an implant tool. The implant tool may include a fulcrum configured to engage a first filament and prevent the release of the coil when the first filament is engaged. Alternatively, an urging means and aperture may be disposed within the sidewall of the implant tool, and a first filament may, in conjunction with the aperture and sidewall, releasably retain the coil until the first filament is withdrawn. The implant tool may also include an alignment member for aligning the first filament.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: October 3, 2017
    Assignee: Penumbra, Inc.
    Inventors: Ben Tompkins, Arani Bose, Delilah Hui, David Barry, Stephen Pons, Aleksander Leynov
  • Patent number: 9615951
    Abstract: A system for mechanically deploying intraluminal implants is disclosed. The system is used with an implant that is delivered and/or deployed via a pull wire and includes a handle having a funnel and receiving channel for receiving the pull wire, a slider having a thumb grip and a wedge, and a shuttle having a grabber for grasping the pull wire. The thumb grip is pulled proximally to retract the wedge to cause the grabber to grasp the wire and retract the shuttle but not the wire. An extension spring linked between the slider and the shuttle abruptly pulls the shuttle to retract the pull wire after the slider is fully retracted.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: April 11, 2017
    Assignee: Penumbra, Inc.
    Inventors: Eric Bennett, Erin Vitus, Matt Vargas, Arani Bose, Stephen Pons, Ben Tompkins, David Barry
  • Publication number: 20170095259
    Abstract: Embolic coil implant systems and methods whereby coils are mechanically detachable are disclosed. The coils include a retention element that may be releasably retained within the distal end of an implant tool. The implant tool may include a fulcrum configured to engage a first filament and prevent the release of the coil when the first filament is engaged. Alternatively, an urging means and aperture may be disposed within the sidewall of the implant tool, and a first filament may, in conjunction with the aperture and sidewall, releasably retain the coil until the first filament is withdrawn. The implant tool may also include an alignment member for aligning the first filament.
    Type: Application
    Filed: December 19, 2016
    Publication date: April 6, 2017
    Applicant: Penumbra, Inc.
    Inventors: Ben Tompkins, Arani Bose, Delilah Hui, David Barry, Stephen Pons, Aleksander Leynov
  • Patent number: 9554805
    Abstract: Embolic coil implant systems and methods whereby coils are mechanically detachable are disclosed. The coils include a retention element that may be releasably retained within the distal end of an implant tool. The implant tool may include a fulcrum configured to engage a first filament and prevent the release of the coil when the first filament is engaged. Alternatively, an urging means and aperture may be disposed within the sidewall of the implant tool, and a first filament may, in conjunction with the aperture and sidewall, releasably retain the coil until the first filament is withdrawn. The implant tool may also include an alignment member for aligning the first filament.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: January 31, 2017
    Assignee: Penumbra, Inc.
    Inventors: Ben Tompkins, Arani Bose, Delilah Hui, David Barry, Stephen Pons, Aleksander Leynov
  • Patent number: 9186151
    Abstract: Embolic coil implant systems and methods whereby coils are mechanically detachable are disclosed. The coils include a retention element that may be releasably retained within the distal end of an implant tool. The implant tool may include a fulcrum configured to engage a first filament and prevent the release of the coil when the first filament is engaged. Alternatively, an urging means and aperture may be disposed within the sidewall of the implant tool, and a first filament may, in conjunction with the aperture and sidewall, releasably retain the coil until the first filament is withdrawn. The implant tool may also include an alignment member for aligning the first filament.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: November 17, 2015
    Assignee: PENUMBRA, INC.
    Inventors: Ben Tompkins, Arani Bose, Delilah Hui, David Barry, Stephen Pons, Aleksander Leynov
  • Publication number: 20150073524
    Abstract: A system for mechanically deploying intraluminal implants is disclosed. The system is used with an implant that is delivered and/or deployed via a pull wire and includes a handle having a funnel and receiving channel for receiving the pull wire, a slider having a thumb grip and a wedge, and a shuttle having a grabber for grasping the pull wire. The thumb grip is pulled proximally to retract the wedge to cause the grabber to grasp the wire and retract the shuttle but not the wire. An extension spring linked between the slider and the shuttle abruptly pulls the shuttle to retract the pull wire after the slider is fully retracted.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Inventors: Eric Bennett, Erin Vitus, Matt Vargas, Arani Bose, Stephen Pons, Ben Tompkins, David Barry
  • Patent number: 8911487
    Abstract: A system for mechanically deploying intraluminal implants is disclosed. The system is used with an implant that is delivered and/or deployed via a pull wire and includes a handle having a funnel and receiving channel for receiving the pull wire, a slider having a thumb grip and a wedge, and a shuttle having a grabber for grasping the pull wire. The thumb grip is pulled proximally to retract the wedge to cause the grabber to grasp the wire and retract the shuttle but not the wire. An extension spring linked between the slider and the shuttle abruptly pulls the shuttle to retract the pull wire after the slider is fully retracted.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: December 16, 2014
    Assignee: Penumbra, Inc.
    Inventors: Eric Bennett, Erin Vitus, Matt Vargas, Arani Bose, Stephen Pons, Ben Tompkins, David Barry
  • Publication number: 20140358175
    Abstract: Embolic coil implant systems and methods whereby coils are mechanically detachable are disclosed. The coils include a retention element that may be releasably retained within the distal end of an implant tool. The implant tool may include a fulcrum configured to engage a first filament and prevent the release of the coil when the first filament is engaged. Alternatively, an urging means and aperture may be disposed within the sidewall of the implant tool, and a first filament may, in conjunction with the aperture and sidewall, releasably retain the coil until the first filament is withdrawn. The implant tool may also include an alignment member for aligning the first filament.
    Type: Application
    Filed: August 14, 2014
    Publication date: December 4, 2014
    Applicant: Penumbra, Inc.
    Inventors: Ben Tompkins, Arani Bose, Delilah Hui, David Barry, Stephen Pons, Aleksander Leynov
  • Publication number: 20140128907
    Abstract: Vessel occlusion coils disclosed that have a primary configuration for delivery and a secondary configuration for deployment that is conferred upon the devices by a stretch resistant member. In the secondary configuration, the stretch resistant member forms a stiffer coil and may have a greater diameter, and a more complex shape having some interior space, at one end than at the other end, for improved anchoring of the device in the vessel. The methods include intravascular delivery and deployment for implanting one or more vessel occlusion devices.
    Type: Application
    Filed: January 14, 2014
    Publication date: May 8, 2014
    Applicant: Penumbra, Inc.
    Inventors: Delilah Hui, Ben Tompkins
  • Publication number: 20130331882
    Abstract: Embolic coil implant systems and methods whereby coils are mechanically detachable are disclosed. The coils include a retention element that may be releasably retained within the distal end of an implant tool. The implant tool may include a fulcrum configured to engage a first filament and prevent the release of the coil when the first filament is engaged. Alternatively, an urging means and aperture may be disposed within the sidewall of the implant tool, and a first filament may, in conjunction with the aperture and sidewall, releasably retain the coil until the first filament is withdrawn. The implant tool may also include an alignment member for aligning the first filament.
    Type: Application
    Filed: November 19, 2012
    Publication date: December 12, 2013
    Applicant: Penumbra, Inc.
    Inventors: Ben Tompkins, Arani Bose, Delilah Hui, David Barry, Stephen Pons, Aleksander Leynov
  • Patent number: 8333796
    Abstract: Embolic coil implant systems and methods whereby coils are mechanically detachable are disclosed. The coils include a retention element that may be releasably retained within the distal end of an implant tool. The implant tool may include a fulcrum configured to engage a first filament and prevent the release of the coil when the first filament is engaged. Alternatively, an urging means and aperture may be disposed within the sidewall of the implant tool, and a first filament may, in conjunction with the aperture and sidewall, releasably retain the coil until the first filament is withdrawn. The implant tool may also include an alignment member for aligning the first filament.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: December 18, 2012
    Assignee: Penumbra, Inc.
    Inventors: Ben Tompkins, Arani Bose, Delilah Hui, David Barry, Stephen Pons, Aleksander Leynov
  • Publication number: 20110238147
    Abstract: A system for mechanically deploying intraluminal implants is disclosed. The system is used with an implant that is delivered and/or deployed via a pull wire and includes a handle having a funnel and receiving channel for receiving the pull wire, a slider having a thumb grip and a wedge, and a shuttle having a grabber for grasping the pull wire. The thumb grip is pulled proximally to retract the wedge to cause the grabber to grasp the wire and retract the shuttle but not the wire. An extension spring linked between the slider and the shuttle abruptly pulls the shuttle to retract the pull wire after the slider is fully retracted.
    Type: Application
    Filed: September 22, 2010
    Publication date: September 29, 2011
    Applicant: Penumbra, Inc.
    Inventors: Eric Bennett, Erin Vitus, Matt Vargas, Arani Bose, Stephen Pons, Ben Tompkins, David Barry
  • Publication number: 20110184454
    Abstract: Embolic coils are disclosed. The coils include an inner coil, an outer coil, and a stretch resistant member. Some embodiments include a large diameter outer coil formed from a small diameter wire. The inner coils may be either closed pitch or open pitch. Alternative coils include an inner coil that is shape set to a diameter that is larger than the diameter of the outer coil. Another alternative coil has multiple stretch resistant members.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 28, 2011
    Applicant: Penumbra, Inc.
    Inventors: David BARRY, Ben Tompkins, Delilah Hui, Arthur John Lockhart
  • Publication number: 20100174269
    Abstract: Embolic coil implant systems and methods whereby coils are mechanically detachable are disclosed. The coils include a retention element that may be releasably retained within the distal end of an implant tool. The implant tool may include a fulcrum configured to engage a first filament and prevent the release of the coil when the first filament is engaged. Alternatively, an urging means and aperture may be disposed within the sidewall of the implant tool, and a first filament may, in conjunction with the aperture and sidewall, releasably retain the coil until the first filament is withdrawn. The implant tool may also include an alignment member for aligning the first filament.
    Type: Application
    Filed: July 7, 2009
    Publication date: July 8, 2010
    Applicant: Penumbra, Inc.
    Inventors: Ben Tompkins, Arani Bose, Delilah Hui, David Barry, Stephen Pons, Aleksander Leynov
  • Publication number: 20090030400
    Abstract: A delivery catheter for accessing the intra-cranial vascular includes a rigid proximal section and a distal section having an outer diameter and flexibility suitable for advancement into the intra-cranial vasculature, such as the Petrous segment or the Cavernous segment of the internal carotid artery. The wall thickness and rigidity of the catheter decrease from the proximal section to the distal section, preferably in discrete segments each having reduced wall thickness and/or durometer relative to proximally adjacent sections. An intra-cranial access system includes the delivery catheter and a selection catheter insertable through the lumen of the delivery catheter. The selection catheter is shaped to facilitate selection of the target branch of the neurovasculature off the aortic arch and allows the delivery catheter to be advanced over the selection catheter into the selected branch.
    Type: Application
    Filed: July 23, 2008
    Publication date: January 29, 2009
    Inventors: Arani Bose, David Barry, Delilah Hui, Ben Tompkins